scispace - formally typeset
Search or ask a question
Author

Anders Nielsen

Bio: Anders Nielsen is an academic researcher from University of Oslo. The author has contributed to research in topics: Pollinator & Pollination. The author has an hindex of 20, co-authored 45 publications receiving 3115 citations. Previous affiliations of Anders Nielsen include University of the Aegean & Norwegian University of Life Sciences.

Papers
More filters
Journal ArticleDOI
TL;DR: The onset of flowering in plants and first appearance dates of pollinators in several cases appear to advance linearly in response to recent temperature increases, and potential ways of studying warming-caused mismatches and their consequences for plant-pollinator interactions are suggested.
Abstract: Climate warming affects the phenology, local abundance and large-scale distribution of plants and pollinators. Despite this, there is still limited knowledge of how elevated temperatures affect plant-pollinator mutualisms and how changed availability of mutualistic partners influences the persistence of interacting species. Here we review the evidence of climate warming effects on plants and pollinators and discuss how their interactions may be affected by increased temperatures. The onset of flowering in plants and first appearance dates of pollinators in several cases appear to advance linearly in response to recent temperature increases. Phenological responses to climate warming may therefore occur at parallel magnitudes in plants and pollinators, although considerable variation in responses across species should be expected. Despite the overall similarities in responses, a few studies have shown that climate warming may generate temporal mismatches among the mutualistic partners. Mismatches in pollination interactions are still rarely explored and their demographic consequences are largely unknown. Studies on multi-species plant-pollinator assemblages indicate that the overall structure of pollination networks probably are robust against perturbations caused by climate warming. We suggest potential ways of studying warming-caused mismatches and their consequences for plant-pollinator interactions, and highlight the strengths and limitations of such approaches.

902 citations

Journal ArticleDOI
TL;DR: The attributes of web structure that are predicted to confer stability or increased function to a system, as these may be of greatest interest to conservation biologists are summarised.

702 citations

Journal ArticleDOI
TL;DR: It is found that both climate change and alien species will ultimately lead to the creation of novel communities, and certain interactions may no longer occur while there will also be potential for the emergence of new relationships.
Abstract: Global change may substantially affect biodiversity and ecosystem functioning but little is known about its effects on essential biotic interactions. Since different environmental drivers rarely act in isolation it is important to consider interactive effects. Here, we focus on how two key drivers of anthropogenic environmental change, climate change and the introduction of alien species, affect plant-pollinator interactions. Based on a literature survey we identify climatically sensitive aspects of species interactions, assess potential effects of climate change on these mechanisms, and derive hypotheses that may form the basis of future research. We find that both climate change and alien species will ultimately lead to the creation of novel communities. In these communities certain interactions may no longer occur while there will also be potential for the emergence of new relationships. Alien species can both partly compensate for the often negative effects of climate change but also amplify them in some cases. Since potential positive effects are often restricted to generalist interactions among species, climate change and alien species in combination can result in significant threats to more specialist interactions involving native species.

317 citations

Journal ArticleDOI
TL;DR: Other properties that can cause aliens to be strong interactors for pollination, and how alien species affect the reproductive success in natives are discussed, which emphasize the spatial scales addressed in the reviewed studies.

260 citations

Journal ArticleDOI
TL;DR: A general pattern is identified in the interplay between the attractiveness of flowering plant patches for pollinators and density dependence of flower visitation, and also a strong plant species-specific response to habitat fragmentation effects that can guide efforts to conserve plant–pollinator interactions, ecosystem functioning and plant fitness in fragmented habitats.
Abstract: Summary 1. Habitat fragmentation can affect pollinator and plant population structure in terms of species composition, abundance, area covered and density of flowering plants. This, in turn, may affect pollinator visitation frequency, pollen deposition, seed set and plant fitness. 2. A reduction in the quantity of flower visits can be coupled with a reduction in the quality of pollination service and hence the plants’ overall reproductive success and long-term survival. Understanding the relationship between plant population size and ⁄ or isolation and pollination limitation is of fundamental importance for plant conservation. 3. We examined flower visitation and seed set of 10 different plant species from five European countries to investigate the general effects of plant populations size and density, both within (patch level) and between populations (population level), on seed set and pollination limitation. 4. We found evidence that the effects of area and density of flowering plant assemblages were generally more pronounced at the patch level than at the population level. We also found that patch and population level together influenced flower visitation and seed set, and the latter increased with increasing patch area and density, but this effect was only apparent in small populations. 5. Synthesis. By using an extensive pan-European data set on flower visitation and seed set we have identified a general pattern in the interplay between the attractiveness of flowering plant patches for pollinators and density dependence of flower visitation, and also a strong plant species-specific response to habitat fragmentation effects. This can guide efforts to conserve plant–pollinator interactions, ecosystem functioning and plant fitness in fragmented habitats.

227 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The nature and extent of reported declines, and the potential drivers of pollinator loss are described, including habitat loss and fragmentation, agrochemicals, pathogens, alien species, climate change and the interactions between them are reviewed.
Abstract: Pollinators are a key component of global biodiversity, providing vital ecosystem services to crops and wild plants. There is clear evidence of recent declines in both wild and domesticated pollinators, and parallel declines in the plants that rely upon them. Here we describe the nature and extent of reported declines, and review the potential drivers of pollinator loss, including habitat loss and fragmentation, agrochemicals, pathogens, alien species, climate change and the interactions between them. Pollinator declines can result in loss of pollination services which have important negative ecological and economic impacts that could significantly affect the maintenance of wild plant diversity, wider ecosystem stability, crop production, food security and human welfare.

4,608 citations

Journal ArticleDOI
02 Apr 2015-Nature
TL;DR: A terrestrial assemblage database of unprecedented geographic and taxonomic coverage is analysed to quantify local biodiversity responses to land use and related changes and shows that in the worst-affected habitats, pressures reduce within-sample species richness by an average of 76.5%, total abundance by 39.5% and rarefaction-based richness by 40.3%.
Abstract: Human activities, especially conversion and degradation of habitats, are causing global biodiversity declines. How local ecological assemblages are responding is less clear--a concern given their importance for many ecosystem functions and services. We analysed a terrestrial assemblage database of unprecedented geographic and taxonomic coverage to quantify local biodiversity responses to land use and related changes. Here we show that in the worst-affected habitats, these pressures reduce within-sample species richness by an average of 76.5%, total abundance by 39.5% and rarefaction-based richness by 40.3%. We estimate that, globally, these pressures have already slightly reduced average within-sample richness (by 13.6%), total abundance (10.7%) and rarefaction-based richness (8.1%), with changes showing marked spatial variation. Rapid further losses are predicted under a business-as-usual land-use scenario; within-sample richness is projected to fall by a further 3.4% globally by 2100, with losses concentrated in biodiverse but economically poor countries. Strong mitigation can deliver much more positive biodiversity changes (up to a 1.9% average increase) that are less strongly related to countries' socioeconomic status.

2,532 citations

Journal ArticleDOI
31 Mar 2017-Science
TL;DR: The negative effects of climate change cannot be adequately anticipated or prepared for unless species responses are explicitly included in decision-making and global strategic frameworks, and feedbacks on climate itself are documented.
Abstract: Distributions of Earth’s species are changing at accelerating rates, increasingly driven by human-mediated climate change. Such changes are already altering the composition of ecological communities, but beyond conservation of natural systems, how and why does this matter? We review evidence that climate-driven species redistribution at regional to global scales affects ecosystem functioning, human well-being, and the dynamics of climate change itself. Production of natural resources required for food security, patterns of disease transmission, and processes of carbon sequestration are all altered by changes in species distribution. Consideration of these effects of biodiversity redistribution is critical yet lacking in most mitigation and adaptation strategies, including the United Nation’s Sustainable Development Goals.

1,917 citations

01 Dec 2010
TL;DR: In this article, the authors suggest a reduction in the global NPP of 0.55 petagrams of carbon, which would not only weaken the terrestrial carbon sink, but would also intensify future competition between food demand and biofuel production.
Abstract: Terrestrial net primary production (NPP) quantifies the amount of atmospheric carbon fixed by plants and accumulated as biomass. Previous studies have shown that climate constraints were relaxing with increasing temperature and solar radiation, allowing an upward trend in NPP from 1982 through 1999. The past decade (2000 to 2009) has been the warmest since instrumental measurements began, which could imply continued increases in NPP; however, our estimates suggest a reduction in the global NPP of 0.55 petagrams of carbon. Large-scale droughts have reduced regional NPP, and a drying trend in the Southern Hemisphere has decreased NPP in that area, counteracting the increased NPP over the Northern Hemisphere. A continued decline in NPP would not only weaken the terrestrial carbon sink, but it would also intensify future competition between food demand and proposed biofuel production.

1,780 citations

Journal ArticleDOI
TL;DR: The mutually beneficial interactions between plants and their animal pollinators and seed dispersers have been paramount in the generation of Earth's biodiversity and understanding how coevolution proceeds in these highly diversified mutualisms among free-living species presents a conceptual challenge.
Abstract: The mutually beneficial interactions between plants and their animal pollinators and seed dispersers have been paramount in the generation of Earth's biodiversity. These mutualistic interactions often involve dozens or even hundreds of species that form complex networks of interdependences. Understanding how coevolution proceeds in these highly diversified mutualisms among free-living species presents a conceptual challenge. Recent work has led to the unambiguous conclusion that mutualistic networks are very heterogeneous (the bulk of the species have a few interactions, but a few species are much more connected than expected by chance), nested (specialists interact with subsets of the species with which generalists interact), and built on weak and asymmetric links among species. Both ecological variables (e.g., phenology, local abundance, and geographic range) and past evolutionary history may explain such network patterns. Network structure has important implications for the coexistence and stability of...

1,328 citations