scispace - formally typeset
Search or ask a question
Author

Anders Osted

Bio: Anders Osted is an academic researcher from University of Copenhagen. The author has contributed to research in topics: Coupled cluster & Polarizability. The author has an hindex of 18, co-authored 25 publications receiving 2371 citations.

Papers
More filters
Journal ArticleDOI
Kestutis Aidas1, Celestino Angeli2, Keld L. Bak3, Vebjørn Bakken4, Radovan Bast5, Linus Boman6, Ove Christiansen3, Renzo Cimiraglia2, Sonja Coriani7, Pål Dahle8, Erik K. Dalskov, Ulf Ekström4, Thomas Enevoldsen9, Janus J. Eriksen3, Patrick Ettenhuber3, Berta Fernández10, Lara Ferrighi, Heike Fliegl4, Luca Frediani, Kasper Hald11, Asger Halkier, Christof Hättig12, Hanne Heiberg13, Trygve Helgaker4, Alf C. Hennum14, Hinne Hettema15, Eirik Hjertenæs16, Stine Høst3, Ida-Marie Høyvik3, Maria Francesca Iozzi17, Brannislav Jansik18, Hans-Jørgen Aa. Jensen9, Dan Jonsson, Poul Jørgensen3, Johanna Kauczor19, Sheela Kirpekar, Thomas Kjærgaard3, Wim Klopper20, Stefan Knecht21, Rika Kobayashi22, Henrik Koch16, Jacob Kongsted9, Andreas Krapp, Kasper Kristensen3, Andrea Ligabue23, Ola B. Lutnæs24, Juan Ignacio Melo25, Kurt V. Mikkelsen26, Rolf H. Myhre16, Christian Neiss27, Christian B. Nielsen, Patrick Norman19, Jeppe Olsen3, Jógvan Magnus Haugaard Olsen9, Anders Osted, Martin J. Packer9, Filip Pawłowski28, Thomas Bondo Pedersen4, Patricio Federico Provasi29, Simen Reine4, Zilvinas Rinkevicius5, Torgeir A. Ruden, Kenneth Ruud, Vladimir V. Rybkin20, Paweł Sałek, Claire C. M. Samson20, Alfredo Sánchez de Merás30, Trond Saue31, Stephan P. A. Sauer26, Bernd Schimmelpfennig20, Kristian Sneskov11, Arnfinn Hykkerud Steindal, Kristian O. Sylvester-Hvid, Peter R. Taylor32, Andrew M. Teale33, Erik I. Tellgren4, David P. Tew34, Andreas J. Thorvaldsen3, Lea Thøgersen35, Olav Vahtras5, Mark A. Watson36, David J. D. Wilson37, Marcin Ziółkowski38, Hans Ågren5 
TL;DR: Dalton is a powerful general‐purpose program system for the study of molecular electronic structure at the Hartree–Fock, Kohn–Sham, multiconfigurational self‐consistent‐field, Møller–Plesset, configuration‐interaction, and coupled‐cluster levels of theory.
Abstract: Dalton is a powerful general-purpose program system for the study of molecular electronic structure at the Hartree-Fock, Kohn-Sham, multiconfigurational self-consistent-field, MOller-Plesset, confi ...

1,212 citations

Journal ArticleDOI
TL;DR: In this article, a dipole interaction model for calculating the polarizability of molecular clusters is proposed, where a damping of the interatomic interaction at short distances is introduced in such a way as to retain a traceless interaction tensor and a good description of the damping over a wide range of interatomic distances.
Abstract: We have developed and investigated a dipole interaction model for calculating the polarizability of molecular clusters. The model has been parametrized from the frequency-dependent molecular polarizability as obtained from quantum chemical calculations for a series of 184 aliphatic, aromatic, and heterocyclic compounds. A damping of the interatomic interaction at short distances is introduced in such a way as to retain a traceless interaction tensor and a good description of the damping over a wide range of interatomic distances. By adopting atomic polarizabilities in addition to atom-type parameters describing the damping and the frequency dependence, respectively, the model is found to reproduce the molecular frequency-dependent polarizability tensor calculated with ab initio methods. A study of the polarizability of four dimers has been carried out: the hydrogen fluoride, methane, benzene, and urea dimers. We find in general good agreement between the model and the quantum chemical results over a wide ...

183 citations

Journal ArticleDOI
TL;DR: In this article, a coupled cluster/molecular mechanics (CC/MM) and self-consistent field-based MCF/MM approaches for wavefunctions, energies and response properties are presented.
Abstract: This paper presents the coupled cluster/molecular mechanics (CC/MM) and self-consistent field/molecular mechanics (SCF/MM) approaches for wavefunctions, energies and response properties. Two physically different theories are derived, the mean-field and the direct-field interaction approaches, together with expressions for the optimization condition of both variational and non-variational wavefunctions and energies. Also derived are the linear response functions at the CC/MM and SCF/MM levels of theory, and the expressions are compared with the vacuum response functions.

120 citations

Journal ArticleDOI
TL;DR: In this article, the authors present the first implementation of linear response theory for the coupled cluster/molecular mechanics (CC/MM) method using a self-consistent procedure while electrostatic effects are modeled by assigning partial charges to the MM molecules and a van der Waals potential describes dispersion and short range repulsion.
Abstract: We present the first implementation of linear response theory for the coupled cluster/molecular mechanics (CC/MM) method. This model introduces polarization effects into a quantum mechanical/molecular mechanical (QM/MM) framework using a self-consistent procedure while electrostatic effects are modeled by assigning partial charges to the MM molecules and a van der Waals potential describes dispersion and short range repulsion. The quantum mechanical subsystem is described using coupled cluster electronic structure methods. The response theory for the calculation of molecular properties for such a model is described and implemented at the coupled cluster singles and doubles (CCSD) level. Sample calculations of excitation energies, transition moments and frequency dependent polarizabilities for liquid water are presented. Finally, we consider the development of a parameter independent iterative self-consistent CC/MM model where the properties calculated by CC/MM response theory are used in the QM/MM interaction Hamiltonian.

116 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This paper presents a meta-modelling procedure called "Continuum Methods within MD and MC Simulations 3072", which automates the very labor-intensive and therefore time-heavy and expensive process of integrating discrete and continuous components into a discrete-time model.
Abstract: 6.2.2. Definition of Effective Properties 3064 6.3. Response Properties to Magnetic Fields 3066 6.3.1. Nuclear Shielding 3066 6.3.2. Indirect Spin−Spin Coupling 3067 6.3.3. EPR Parameters 3068 6.4. Properties of Chiral Systems 3069 6.4.1. Electronic Circular Dichroism (ECD) 3069 6.4.2. Optical Rotation (OR) 3069 6.4.3. VCD and VROA 3070 7. Continuum and Discrete Models 3071 7.1. Continuum Methods within MD and MC Simulations 3072

13,286 citations

Journal ArticleDOI
Kestutis Aidas1, Celestino Angeli2, Keld L. Bak3, Vebjørn Bakken4, Radovan Bast5, Linus Boman6, Ove Christiansen3, Renzo Cimiraglia2, Sonja Coriani7, Pål Dahle8, Erik K. Dalskov, Ulf Ekström4, Thomas Enevoldsen9, Janus J. Eriksen3, Patrick Ettenhuber3, Berta Fernández10, Lara Ferrighi, Heike Fliegl4, Luca Frediani, Kasper Hald11, Asger Halkier, Christof Hättig12, Hanne Heiberg13, Trygve Helgaker4, Alf C. Hennum14, Hinne Hettema15, Eirik Hjertenæs16, Stine Høst3, Ida-Marie Høyvik3, Maria Francesca Iozzi17, Brannislav Jansik18, Hans-Jørgen Aa. Jensen9, Dan Jonsson, Poul Jørgensen3, Johanna Kauczor19, Sheela Kirpekar, Thomas Kjærgaard3, Wim Klopper20, Stefan Knecht21, Rika Kobayashi22, Henrik Koch16, Jacob Kongsted9, Andreas Krapp, Kasper Kristensen3, Andrea Ligabue23, Ola B. Lutnæs24, Juan Ignacio Melo25, Kurt V. Mikkelsen26, Rolf H. Myhre16, Christian Neiss27, Christian B. Nielsen, Patrick Norman19, Jeppe Olsen3, Jógvan Magnus Haugaard Olsen9, Anders Osted, Martin J. Packer9, Filip Pawłowski28, Thomas Bondo Pedersen4, Patricio Federico Provasi29, Simen Reine4, Zilvinas Rinkevicius5, Torgeir A. Ruden, Kenneth Ruud, Vladimir V. Rybkin20, Paweł Sałek, Claire C. M. Samson20, Alfredo Sánchez de Merás30, Trond Saue31, Stephan P. A. Sauer26, Bernd Schimmelpfennig20, Kristian Sneskov11, Arnfinn Hykkerud Steindal, Kristian O. Sylvester-Hvid, Peter R. Taylor32, Andrew M. Teale33, Erik I. Tellgren4, David P. Tew34, Andreas J. Thorvaldsen3, Lea Thøgersen35, Olav Vahtras5, Mark A. Watson36, David J. D. Wilson37, Marcin Ziółkowski38, Hans Ågren5 
TL;DR: Dalton is a powerful general‐purpose program system for the study of molecular electronic structure at the Hartree–Fock, Kohn–Sham, multiconfigurational self‐consistent‐field, Møller–Plesset, configuration‐interaction, and coupled‐cluster levels of theory.
Abstract: Dalton is a powerful general-purpose program system for the study of molecular electronic structure at the Hartree-Fock, Kohn-Sham, multiconfigurational self-consistent-field, MOller-Plesset, confi ...

1,212 citations

Journal ArticleDOI
TL;DR: In this article, a set of 28 medium-sized organic molecules is assembled that cover the most important classes of chromophores including polyenes and other unsaturated aliphatic compounds, aromatic hydrocarbons, heterocycles, carbonyl compounds, and nucleobases.
Abstract: A benchmark set of 28 medium-sized organic molecules is assembled that covers the most important classes of chromophores including polyenes and other unsaturated aliphatic compounds, aromatic hydrocarbons, heterocycles, carbonyl compounds, and nucleobases. Vertical excitation energies and one-electron properties are computed for the valence excited states of these molecules using both multiconfigurational second-order perturbation theory, CASPT2, and a hierarchy of coupled cluster methods, CC2, CCSD, and CC3. The calculations are done at identical geometries (MP26-31G*) and with the same basis set (TZVP). In most cases, the CC3 results are very close to the CASPT2 results, whereas there are larger deviations with CC2 and CCSD, especially in singlet excited states that are not dominated by single excitations. Statistical evaluations of the calculated vertical excitation energies for 223 states are presented and discussed in order to assess the relative merits of the applied methods. CC2 reproduces the CC3 reference data for the singlets better than CCSD. On the basis of the current computational results and an extensive survey of the literature, we propose best estimates for the energies of 104 singlet and 63 triplet excited states.

860 citations

Journal ArticleDOI
TL;DR: The current status of research on boron nitride nanotubes (BNNTs) is discussed in this article, where a review of recent achievements in BNNT synthesis, morphology, and atomic structure analysis as well as physical, chemical, and functional property evaluations are reviewed.
Abstract: The current status of research on boron nitride nanotubes (BNNTs)—carbon nanotube structural analogues—is discussed. Latest achievements in BNNT synthesis, morphology, and atomic structure analysis as well as physical, chemical, and functional property evaluations are reviewed. Similarities and differences between structural parameters and properties of BNNTs in comparison with conventional carbon nanotubes are particularly highlighted. Recent breakthroughs in BNNT filling, doping and functionalization, morphology, and electronic structure engineering are examined. Finally, prospective BNNT applications for fabricating field-effect transistors, gas accumulators, and reinforcing polymer films are presented.

855 citations

Journal ArticleDOI
TL;DR: The development of nonlinear optical materials has been driven by a multitude of important technological applications that can be realized if suitable materials are available, and future generations of optoelectronic devices for telecommunications, information storage, optical switching, and signal processing are predicted to a large degree on the development of materials with exceptional NLO responses.
Abstract: The development of nonlinear optical (NLO) materials has been driven by a multitude of important technological applications that can be realized if suitable materials are available 1–15. Future generations of optoelectronic devices for telecommunications, information storage, optical switching, and signal processing are predicted to a large degree on the development of materials with exceptional NLO responses 1–15. A large number of organic π-conjugated molecules have been investigated in the last thirty years for suitability to function as components in hypothetical NLO materials 1–19. Several books and reviews have appeared dealing with theory of nonlinear optics and the structural characteristics and applications of nonlinear optical molecules and materials 1–19. Truly, all-optical NLO effects were not discovered until the discovery of lasers. Second-harmonic generation (SHG) was first observed in a single crystal of quartz by Franken et.al. 20 in 1961. Parametric amplification was observed in lithium niobate (LiNbO3) by two-wave mixing in temperature-tuned single crystals 21. Rentzepis and Pao 22 made the first observation of SHG in an organic material, benzpyrene, in 1964. Heilmeir examined hexamethylenetetramine single crystal SHG in the same year 24. Two other organic materials followed rapidly: hippuric acid and benzil 25. Benzil was the first material that proved relatively easy to grow into large single crystals. Over the last two decades the study of nonlinear optical process in organic and polymer systems has enjoyed rapid and sustained growth 1–19, 25–39. One indication of the growth is the increase in the number of articles published in refereed society journals, as one can find from web of science 25, SCIFINDER 26 and Scopus 27 search. The four years period 1980–1983 saw the publication of 124 such articles. In the next four years period 1984–1987, the production of articles increased to 736 (nearly six times). From 1988–1992, the number of articles increased to more than 4000 25–27. In the last decade, academia, industry and government laboratories have been working in this field to replace electronics by photonics and as a result, the number of publications has reached more than 70,000 25–27. The rapid growth of the field is mainly due to the technological promise of these materials 1–19, 28–37. Traditionally, the materials used to measure second-order NLO behavior were inorganic crystals, such as lithium niobate (LiNbO3) and potassium dihydrogen phosphate (KDP). The optical nonlinearity in these materials is to a large extent caused by the nuclear displacement in an applied electric field, and to a smaller extent by the movement of the electrons 1–10. This limits the bandwidth of the modulator. Organic materials have a number of advantages over inorganic materials for NLO applications 28–35. The ease of modification of organic molecular structures makes it possible to synthesize tailor-made molecules and to fine-tune the properties for the desired application 28–35. Unfortunately, not all organic materials display second-order NLO properties. At the molecular level, they need to be non-centrosymmetric. A large number of organic π-conjugated molecules have been investigated 1–9, 28–35 in the last twenty years. The outcome of the results has helped to establish certain guidelines for molecular design to get good second order NLO materials. However, roughly more than 80% of all π-conjugated organic molecules crystallize in centro-symmetric space groups 1–19, therefore producing materials with no second order bulk susceptibility. To overcome this limitation, organic NLO material doped or covalently attached in polymers, have been introduced by Dalton et. al 5,6,16,38–39. A few of these chromophores have served as components of functioning polymer-based optoelectronic devices; the physical properties of all these prototype materials possess one or more critical deficiencies that render commercialization of these systems impractical 28–39. These facts suggest that new types of molecular design are necessary if significant advances are to be realized. From 1998 onwards, researchers started effort on developing various nanomaterials, with high second order NLO properties and seeking for their applications in photonics as well as chemical and biological detection 40–106. The surface-enhanced phenomenon is predicted to have a particularly important impact in nonlinear optical NLO applications, since the generally weak nonlinear effects can be significantly increased via strong electromagnetic fields at the surfaces of metallic nanostructures 60–129. NLO based sensing have provided great potentials and opportunities for detecting different environmental toxins that exhibit some specific advantages, compared to other conventional and nanomaterial based techniques. Aim of this review is mainly to summarize and evaluate the achievements in development of nanoparticle based second order NLO materials with different sizes and shapes and it will focus on the following three major issues: (i) design of novel NLO active materials using nanoparticles (ii) nonlinear optical properties of single nanoparticle, nanoparticle aggregates and self assembly, and (iii) applications in chemical and biological sensing.

661 citations