scispace - formally typeset
Search or ask a question
Author

Anders Wallensten

Bio: Anders Wallensten is an academic researcher from Uppsala University. The author has contributed to research in topics: Influenza A virus & Influenza A virus subtype H5N1. The author has an hindex of 21, co-authored 34 publications receiving 5274 citations. Previous affiliations of Anders Wallensten include Linköping University & Public Health Agency of Sweden.

Papers
More filters
Journal ArticleDOI
21 Apr 2006-Science
TL;DR: Current knowledge on global patterns of influenza virus infections in wild birds is reviewed, these patterns are discussed in the context of host ecology and in particular birds' behavior, and some important gaps in current knowledge are identified.
Abstract: The outbreak of highly pathogenic avian influenza of the H5N1 subtype in Asia, which has subsequently spread to Russia, the Middle East, Europe, and Africa, has put increased focus on the role of wild birds in the persistence of influenza viruses. The ecology, epidemiology, genetics, and evolution of pathogens cannot be fully understood without taking into account the ecology of their hosts. Here, we review our current knowledge on global patterns of influenza virus infections in wild birds, discuss these patterns in the context of host ecology and in particular birds' behavior, and identify some important gaps in our current knowledge.

1,726 citations

Journal ArticleDOI
TL;DR: A previously unidentified antigenic subtype of HA (H16), detected in viruses circulating in black-headed gulls in Sweden, is described and proposed that sequence analyses of HA and NA genes of influenza A viruses be used for the rapid identification of existing and novel HA andNA subtypes.
Abstract: In wild aquatic birds and poultry around the world, influenza A viruses carrying 15 antigenic subtypes of hemagglutinin (HA) and 9 antigenic subtypes of neuraminidase (NA) have been described. Here we describe a previously unidentified antigenic subtype of HA (H16), detected in viruses circulating in black-headed gulls in Sweden. In agreement with established criteria for the definition of antigenic subtypes, hemagglutination inhibition assays and immunodiffusion assays failed to detect specific reactivity between H16 and the previously described subtypes H1 to H15. Genetically, H16 HA was found to be distantly related to H13 HA, a subtype also detected exclusively in shorebirds, and the amino acid composition of the putative receptor-binding site of H13 and H16 HAs was found to be distinct from that in HA subtypes circulating in ducks and geese. The H16 viruses contained NA genes that were similar to those of other Eurasian shorebirds but genetically distinct from N3 genes detected in other birds and geographical locations. The European gull viruses were further distinguishable from other influenza A viruses based on their PB2, NP, and NS genes. Gaining information on the full spectrum of avian influenza A viruses and creating reagents for their detection and identification will remain an important task for influenza surveillance, outbreak control, and animal and public health. We propose that sequence analyses of HA and NA genes of influenza A viruses be used for the rapid identification of existing and novel HA and NA subtypes.

1,579 citations

Journal ArticleDOI
TL;DR: Temporal and spatial variation in influenza virus prevalence in wild birds was observed, with influenza A virus prevalence varying by sampling location; this is probably related to migration patterns from northeast to southwest and a higher prevalence farther north along the flyways.
Abstract: Although extensive data exist on avian influenza in wild birds in North America, limited information is available from elsewhere, including Europe. Here, molecular diagnostic tools were employed for high-throughput surveillance of migratory birds, as an alternative to classical labor-intensive methods of virus isolation in eggs. This study included 36,809 samples from 323 bird species belonging to 18 orders, of which only 25 species of three orders were positive for influenza A virus. Information on species, locations, and timing is provided for all samples tested. Seven previously unknown host species for avian influenza virus were identified: barnacle goose, bean goose, brent goose, pink-footed goose, bewick's swan, common gull, and guillemot. Dabbling ducks were more frequently infected than other ducks and Anseriformes; this distinction was probably related to bird behavior rather than population sizes. Waders did not appear to play a role in the epidemiology of avian influenza in Europe, in contrast to the Americas. The high virus prevalence in ducks in Europe in spring as compared with North America could explain the differences in virus–host ecology between these continents. Most influenza A virus subtypes were detected in ducks, but H13 and H16 subtypes were detected primarily in gulls. Viruses of subtype H6 were more promiscuous in host range than other subtypes. Temporal and spatial variation in influenza virus prevalence in wild birds was observed, with influenza A virus prevalence varying by sampling location; this is probably related to migration patterns from northeast to southwest and a higher prevalence farther north along the flyways. We discuss the ecology and epidemiology of avian influenza A virus in wild birds in relation to host ecology and compare our results with published studies. These data are useful for designing new surveillance programs and are particularly relevant due to increased interest in avian influenza in wild birds.

669 citations

Journal ArticleDOI
TL;DR: Ducks may maintain influenza virus from 1 year to the next as long as the duck population does not change significantly.
Abstract: We conducted large-scale, systematic sampling of influenza type A virus in migratory waterfowl (mostly mallards [Anas platyrhynchos]) at Ottenby Bird Observatory, southeast Sweden. As with previous studies, we found a higher prevalence in fall than spring, and among juveniles compared with adults. However, in contrast to other studies, we found that prevalence in spring was sometimes high (mean 4.0%, highest 9.5%). This finding raises the possibility that ducks are capable of perpetuating influenza A virus of different subtypes and subtype combinations throughout the year and from 1 year to the next. Isolation of the H5 and H7 subtypes was common, which suggests risk for transmission to sensitive domestic animals such as poultry. We argue that wild bird screening can function as a sentinel system, and we give an example of how it could have been used to forecast a remote and deadly outbreak of influenza A in poultry.

247 citations

Journal ArticleDOI
TL;DR: Surveillance studies in wild birds help generate prototypic vaccine candidates and diagnostic tests for vaccines and other diagnostic tests, according to the US National Institutes of Health.
Abstract: Outbreaks of highly pathogenic avian influenza (HPAI), which originate in poultry upon transmission of low pathogenic viruses from wild birds, have occurred relatively frequently in the last decade. During our ongoing surveillance studies in wild birds, we isolated several influenza A viruses of hemagglutinin subtype H5 and H7 that contain various neuraminidase subtypes. For each of the recorded H5 and H7 HPAI outbreaks in Europe since 1997, our collection contained closely related virus isolates recovered from wild birds, as determined by sequencing and phylogenetic analyses of the hemagglutinin gene and antigenic characterization of the hemagglutinin glycoprotein. The minor genetic and antigenic diversity between the viruses recovered from wild birds and those causing HPAI outbreaks indicates that influenza A virus surveillance studies in wild birds can help generate prototypic vaccine candidates and design and evaluate diagnostic tests, before outbreaks occur in animals and humans.

231 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: Wild aquatic bird populations have long been considered the natural reservoir for influenza A viruses with virus transmission from these birds seeding other avian and mammalian hosts, but recent studies in bats have suggested other reservoir species may also exist.

4,155 citations

Journal ArticleDOI
TL;DR: It is concluded that multiple Imputation for Nonresponse in Surveys should be considered as a legitimate method for answering the question of why people do not respond to survey questions.
Abstract: 25. Multiple Imputation for Nonresponse in Surveys. By D. B. Rubin. ISBN 0 471 08705 X. Wiley, Chichester, 1987. 258 pp. £30.25.

3,216 citations

Journal ArticleDOI
21 Apr 2006-Science
TL;DR: Current knowledge on global patterns of influenza virus infections in wild birds is reviewed, these patterns are discussed in the context of host ecology and in particular birds' behavior, and some important gaps in current knowledge are identified.
Abstract: The outbreak of highly pathogenic avian influenza of the H5N1 subtype in Asia, which has subsequently spread to Russia, the Middle East, Europe, and Africa, has put increased focus on the role of wild birds in the persistence of influenza viruses. The ecology, epidemiology, genetics, and evolution of pathogens cannot be fully understood without taking into account the ecology of their hosts. Here, we review our current knowledge on global patterns of influenza virus infections in wild birds, discuss these patterns in the context of host ecology and in particular birds' behavior, and identify some important gaps in our current knowledge.

1,726 citations

Journal ArticleDOI
TL;DR: The SHSIP provides a well-detailed description of the proposed value-based models of care through the Patient-Centered Medical Home (PCMH) model, resulting in the statewide implementation of Accountable Health Communities (AHCs).
Abstract: Vision for Transformation Strengths: The SHSIP describes a holistic transformation plan and ensures connections between various plan components. The State’s Plan seeks to reward health care providers for better care, smarter spending, and healthier people through higher quality, instead of quantity of services by utilizing valuebased purchasing across public and private payers. The SHSIP provides a well-detailed description of the proposed value-based models of care through the Patient-Centered Medical Home (PCMH) model, resulting in the statewide implementation of Accountable Health Communities (AHCs). The SHSIP outlines a long-term vision of building and expanding the PCMH model into a Community Centered Health Homes (CCHHs) model, which will focus on prevention and collaboration with other communitybased organizations. Another strength identified is the amount of existing PCMHs operating within the State. The SHSIP provides a course of action to assist non-PCMH practices to become nationally certified, as well as, goals for a single, statewide PCMH model to be used by all providers and payers within the state. The implementation of the AHCs will be key in addressing social determinants of health within various communities and seems to align well with the PCMH goals. This focus on population and community health will enable the State to make a broader impact and support the long-term goal of moving towards a CCHH model. The focus on the improvement of clinical, behavioral, and oral health care within the urban, rural, and frontier communities is well aligned and consistent with the SIM goals and the overall Triple Aim initiative. Figure 18: Driver Diagram clearly shows how the State plans to achieve the Triple Aim by 2020.

1,627 citations