scispace - formally typeset
Search or ask a question
Author

Andiappan Rathinavel

Bio: Andiappan Rathinavel is an academic researcher from Government Rajaji Hospital. The author has contributed to research in topics: Dilated cardiomyopathy & Cardiomyopathy. The author has an hindex of 11, co-authored 19 publications receiving 709 citations. Previous affiliations of Andiappan Rathinavel include Madurai Kamaraj University & Madurai Medical College.

Papers
More filters
Journal ArticleDOI
TL;DR: A deletion of 25 bp in the gene encoding cardiac myosin binding protein C (MYBPC3) is described that is associated with heritable cardiomyopathies and an increased risk of heart failure in Indian populations.
Abstract: Kumarasamy Thangaraj and colleagues describe the association of a 25-bp deletion in MYBPC3 with heritable cardiomyopathies in Indian populations. They find a high prevalence (4–8%) of the deletion in surveyed Indian populations and an absence of the deletion in surveyed populations outside of Southeast Asia. Heart failure is a leading cause of mortality in South Asians. However, its genetic etiology remains largely unknown1. Cardiomyopathies due to sarcomeric mutations are a major monogenic cause for heart failure (MIM600958). Here, we describe a deletion of 25 bp in the gene encoding cardiac myosin binding protein C (MYBPC3) that is associated with heritable cardiomyopathies and an increased risk of heart failure in Indian populations (initial study OR = 5.3 (95% CI = 2.3–13), P = 2 × 10−6; replication study OR = 8.59 (3.19–25.05), P = 3 × 10−8; combined OR = 6.99 (3.68–13.57), P = 4 × 10−11) and that disrupts cardiomyocyte structure in vitro. Its prevalence was found to be high (∼4%) in populations of Indian subcontinental ancestry. The finding of a common risk factor implicated in South Asian subjects with cardiomyopathy will help in identifying and counseling individuals predisposed to cardiac diseases in this region.

256 citations

Journal ArticleDOI
18 Aug 2014-PLOS ONE
TL;DR: The release of bacterial and viral DNA elements in the circulation could play a major role leading to elevated circDNA levels in CVD patients, which could be either the cause or consequence of CVD incidence.
Abstract: Cardiovascular diseases (CVDs) are the leading cause of death worldwide. An expanding body of evidence supports the role of human microbiome in the establishment of CVDs and, this has gained much attention recently. This work was aimed to study the circulating human microbiome in CVD patients and healthy subjects. The levels of circulating cell free DNA (circDNA) was higher in CVD patients (n = 80) than in healthy controls (n = 40). More specifically, the relative levels of circulating bacterial DNA and the ratio of 16S rRNA/β-globin gene copy numbers were higher in the circulation of CVD patients than healthy individuals. In addition, we found a higher circulating microbial diversity in CVD patients (n = 3) in comparison to healthy individuals (n = 3) by deep shotgun sequencing. At the phylum level, we observed a dominance of Actinobacteria in CVD patients, followed by Proteobacteria, in contrast to that in healthy controls, where Proteobacteria was predominantly enriched, followed by Actinobacteria. The circulating virome in CVD patients was enriched with bacteriophages with a preponderance of Propionibacterium phages, followed by Pseudomonas phages and Rhizobium phages in contrast to that in healthy individuals, where a relatively greater abundance of eukaryotic viruses dominated by Lymphocystis virus (LCV) and Torque Teno viruses (TTV) was observed. Thus, the release of bacterial and viral DNA elements in the circulation could play a major role leading to elevated circDNA levels in CVD patients. The increased circDNA levels could be either the cause or consequence of CVD incidence, which needs to be explored further.

143 citations

Journal ArticleDOI
TL;DR: It is concluded that GSTM1, GSTT 1 and GSTP1 variants might contribute to the development of T2DM and GSTT1 variant alone is involved in theDevelopment of T 2DM associated CAD complications in the South Indian population.

77 citations

Journal ArticleDOI
TL;DR: Biochemical studies showed that DCM-associated RAF1 mutants had altered kinase activity, resulting in largely unaltered ERK activation but in AKT that was hyperactivated in a BRAF-dependent manner, which resulted in a heart failure phenotype with AKT hyperactivation that was rescued by treatment with rapamycin.
Abstract: Dilated cardiomyopathy (DCM) is a highly heterogeneous trait with sarcomeric gene mutations predominating. The cause of a substantial percentage of DCMs remains unknown, and no gene-specific therapy is available. On the basis of resequencing of 513 DCM cases and 1,150 matched controls from various cohorts of distinct ancestry, we discovered rare, functional RAF1 mutations in 3 of the cohorts (South Indian, North Indian and Japanese). The prevalence of RAF1 mutations was ~9% in childhood-onset DCM cases in these three cohorts. Biochemical studies showed that DCM-associated RAF1 mutants had altered kinase activity, resulting in largely unaltered ERK activation but in AKT that was hyperactivated in a BRAF-dependent manner. Constitutive expression of these mutants in zebrafish embryos resulted in a heart failure phenotype with AKT hyperactivation that was rescued by treatment with rapamycin. These findings provide new mechanistic insights and potential therapeutic targets for RAF1-associated DCM and further expand the clinical spectrum of RAF1-related human disorders.

62 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The utility of ToppGene Suite is demonstrated using 20 recently reported GWAS-based gene–disease associations (including novel disease genes) representing five diseases.
Abstract: ToppGene Suite (http://toppgene.cchmc.org; this web site is free and open to all users and does not require a login to access) is a one-stop portal for (i) gene list functional enrichment, (ii) candidate gene prioritization using either functional annotations or network analysis and (iii) identification and prioritization of novel disease candidate genes in the interactome. Functional annotation-based disease candidate gene prioritization uses a fuzzy-based similarity measure to compute the similarity between any two genes based on semantic annotations. The similarity scores from individual features are combined into an overall score using statistical meta-analysis. A P-value of each annotation of a test gene is derived by random sampling of the whole genome. The protein-protein interaction network (PPIN)-based disease candidate gene prioritization uses social and Web networks analysis algorithms (extended versions of the PageRank and HITS algorithms, and the K-Step Markov method). We demonstrate the utility of ToppGene Suite using 20 recently reported GWAS-based gene-disease associations (including novel disease genes) representing five diseases. ToppGene ranked 19 of 20 (95%) candidate genes within the top 20%, while ToppNet ranked 12 of 16 (75%) candidate genes among the top 20%.

2,435 citations

Journal ArticleDOI
24 Sep 2009-Nature
TL;DR: It is predicted that there will be an excess of recessive diseases in India, which should be possible to screen and map genetically and is higher in traditionally upper caste and Indo-European speakers.
Abstract: India has been underrepresented in genome-wide surveys of human variation. We analyse 25 diverse groups in India to provide strong evidence for two ancient populations, genetically divergent, that are ancestral to most Indians today. One, the 'Ancestral North Indians' (ANI), is genetically close to Middle Easterners, Central Asians, and Europeans, whereas the other, the 'Ancestral South Indians' (ASI), is as distinct from ANI and East Asians as they are from each other. By introducing methods that can estimate ancestry without accurate ancestral populations, we show that ANI ancestry ranges from 39-71% in most Indian groups, and is higher in traditionally upper caste and Indo-European speakers. Groups with only ASI ancestry may no longer exist in mainland India. However, the indigenous Andaman Islanders are unique in being ASI-related groups without ANI ancestry. Allele frequency differences between groups in India are larger than in Europe, reflecting strong founder effects whose signatures have been maintained for thousands of years owing to endogamy. We therefore predict that there will be an excess of recessive diseases in India, which should be possible to screen and map genetically.

1,457 citations

Journal ArticleDOI
TL;DR: In this review the main endothelial abnormalities found in various human diseases such as cancer, diabetes mellitus, atherosclerosis, and viral infections are addressed.
Abstract: Alterations of endothelial cells and the vasculature play a central role in the pathogenesis of a broad spectrum of the most dreadful of human diseases, as endothelial cells have the key function of participating in the maintenance of patent and functional capillaries. The endothelium is directly involved in peripheral vascular disease, stroke, heart disease, diabetes, insulin resistance, chronic kidney failure, tumor growth, metastasis, venous thrombosis, and severe viral infectious diseases. Dysfunction of the vascular endothelium is thus a hallmark of human diseases. In this review the main endothelial abnormalities found in various human diseases such as cancer, diabetes mellitus, atherosclerosis, and viral infections are addressed.

1,070 citations

Journal ArticleDOI
02 Aug 2017-Nature
TL;DR: The efficiency, accuracy and safety of the approach presented suggest that it has potential to be used for the correction of heritable mutations in human embryos by complementing preimplantation genetic diagnosis.
Abstract: Genome editing has potential for the targeted correction of germline mutations. Here we describe the correction of the heterozygous MYBPC3 mutation in human preimplantation embryos with precise CRISPR-Cas9-based targeting accuracy and high homology-directed repair efficiency by activating an endogenous, germline-specific DNA repair response. Induced double-strand breaks (DSBs) at the mutant paternal allele were predominantly repaired using the homologous wild-type maternal gene instead of a synthetic DNA template. By modulating the cell cycle stage at which the DSB was induced, we were able to avoid mosaicism in cleaving embryos and achieve a high yield of homozygous embryos carrying the wild-type MYBPC3 gene without evidence of off-target mutations. The efficiency, accuracy and safety of the approach presented suggest that it has potential to be used for the correction of heritable mutations in human embryos by complementing preimplantation genetic diagnosis. However, much remains to be considered before clinical applications, including the reproducibility of the technique with other heterozygous mutations.

691 citations

Journal ArticleDOI
TL;DR: Molecular pathways that appear to contribute to the immune imbalance and the cytokine dysregulation, which is associated with “inflammageing” or parainflammation are highlighted and suggested to delay age-related diseases and aging itself by suppressing pro-inflammatory molecular mechanisms or improving the timely resolution of inflammation.
Abstract: Cytokine dysregulation is believed to play a key role in the remodeling of the immune system at older age, with evidence pointing to an inability to fine-control systemic inflammation, which seems to be a marker of unsuccessful aging. This reshaping of cytokine expression pattern, with a progressive tendency toward a pro-inflammatory phenotype has been called "inflamm-aging." Despite research there is no clear understanding about the causes of "inflamm-aging" that underpin most major age-related diseases, including atherosclerosis, diabetes, Alzheimer's disease, rheumatoid arthritis, cancer, and aging itself. While inflammation is part of the normal repair response for healing, and essential in keeping us safe from bacterial and viral infections and noxious environmental agents, not all inflammation is good. When inflammation becomes prolonged and persists, it can become damaging and destructive. Several common molecular pathways have been identified that are associated with both aging and low-grade inflammation. The age-related change in redox balance, the increase in age-related senescent cells, the senescence-associated secretory phenotype (SASP) and the decline in effective autophagy that can trigger the inflammasome, suggest that it may be possible to delay age-related diseases and aging itself by suppressing pro-inflammatory molecular mechanisms or improving the timely resolution of inflammation. Conversely there may be learning from molecular or genetic pathways from long-lived cohorts who exemplify good quality aging. Here, we will discuss some of the current ideas and highlight molecular pathways that appear to contribute to the immune imbalance and the cytokine dysregulation, which is associated with "inflammageing" or parainflammation. Evidence of these findings will be drawn from research in cardiovascular disease, cancer, neurological inflammation and rheumatoid arthritis.

663 citations