scispace - formally typeset
Search or ask a question
Author

Andor Pivarcsi

Bio: Andor Pivarcsi is an academic researcher from Karolinska Institutet. The author has contributed to research in topics: Keratinocyte & Psoriasis. The author has an hindex of 44, co-authored 85 publications receiving 7779 citations. Previous affiliations of Andor Pivarcsi include Hungarian Academy of Sciences & Uppsala University.


Papers
More filters
Journal ArticleDOI
TL;DR: The findings provide a new link among staphylococcal colonization, subsequent T-cell recruitment/activation, and pruritus induction in patients with atopic dermatitis, and show that IL-31 may represent a novel target for antipruritic drug development.
Abstract: Background IL-31 is a novel T-cell–derived cytokine that induces severe pruritus and dermatitis in transgenic mice, and signals through a heterodimeric receptor composed of IL-31 receptor A and oncostatin M receptor. Objective To investigate the role of human IL-31 in pruritic and nonpruritic inflammatory skin diseases. Methods The expression of IL-31 was analyzed by quantitative real-time PCR in skin samples of healthy individuals and patients with chronic inflammatory skin diseases. Moreover, IL-31 expression was analyzed in nonlesional skin of atopic dermatitis patients after allergen or superantigen exposure, as well as in stimulated leukocytes. The tissue distribution of the IL-31 receptor heterodimer was investigated by DNA microarray analysis. Results IL-31 was significantly overexpressed in pruritic atopic compared with nonpruritic psoriatic skin inflammation. Highest IL-31 levels were detected in prurigo nodularis, one of the most pruritic forms of chronic skin inflammation. In vivo , staphylococcal superantigen rapidly induced IL-31 expression in atopic individuals. In vitro , staphylococcal enterotoxin B but not viruses or T H 1 and T H 2 cytokines induced IL-31 in leukocytes. In patients with atopic dermatitis, activated leukocytes expressed significantly higher IL-31 levels compared with control subjects. IL-31 receptor A showed most abundant expression in dorsal root ganglia representing the site where the cell bodies of cutaneous sensory neurons reside. Conclusion Our findings provide a new link among staphylococcal colonization, subsequent T-cell recruitment/activation, and pruritus induction in patients with atopic dermatitis. Taken together, these findings show that IL-31 may represent a novel target for antipruritic drug development.

867 citations

Journal ArticleDOI
11 Jul 2007-PLOS ONE
TL;DR: It is shown for the first time that psoriasis-affected skin has a specific microRNA expression profile when compared with healthy human skin or with another chronic inflammatory skin disease, atopic eczema.
Abstract: MicroRNAs are a recently discovered class of posttranscriptional regulators of gene expression with critical functions in health and disease. Psoriasis is the most prevalent chronic inflammatory skin disease in adults, with a substantial negative impact on the patients' quality of life. Here we show for the first time that psoriasis-affected skin has a specific microRNA expression profile when compared with healthy human skin or with another chronic inflammatory skin disease, atopic eczema. Among the psoriasis-specific microRNAs, we identified leukocyte-derived microRNAs and one keratinocyte-derived microRNA, miR-203. In a panel of 21 different human organs and tissues, miR-203 showed a highly skin-specific expression profile. Among the cellular constituents of the skin, it was exclusively expressed by keratinocytes. The up-regulation of miR-203 in psoriatic plaques was concurrent with the down-regulation of an evolutionary conserved target of miR-203, suppressor of cytokine signaling 3 (SOCS-3), which is involved in inflammatory responses and keratinocyte functions. Our results suggest that microRNA deregulation is involved in the pathogenesis of psoriasis and contributes to the dysfunction of the cross talk between resident and infiltrating cells. Taken together, a new layer of regulatory mechanisms is involved in the pathogenesis of chronic inflammatory skin diseases.

731 citations

Journal ArticleDOI
TL;DR: The latest findings about the role of miRNAs in the development of the immune system and regulation of immune functions and inflammation are summarized.

516 citations

Journal ArticleDOI
TL;DR: Evidence is provided that keratinocytes express both TLR2 and TLR4 at the mRNA and protein levels, and it is shown that TLR 2 andTLR4 are present in the normal human epidermis in vivo and that their expression is regulated by microbial components.
Abstract: Keratinocytes have the ability to kill pathogenic fungi and bacteria by producing antimicrobial substances. Recent studies suggest that microbial components use signaling molecules of the human Toll-like receptor (TLR) family to transduce signals in various cells. Here we provide evidence that keratinocytes express both TLR2 and TLR4 at the mRNA and protein levels, and show that TLR2 and TLR4 are present in the normal human epidermis in vivo and that their expression is regulated by microbial components. The expression of myeloid differentiation protein gene (MyD88), which is involved in the signaling pathway of many TLR, was also demonstrated in keratinocytes. LPS + IFN-gamma increased the expression of TLR2 and TLR4 50- and 5-fold respectively. Treatment of keratinocytes with Candida albicans, mannan, Mycobacterium tuberculosis or LPS with IFN-gamma resulted in the activation and nuclear translocation of NF-kappaB. Inhibition of NF-kappaB blocked the Candida-killing activity of keratinocytes, suggesting that the antimicrobial effect of keratinocytes requires NF-kappaB activation. LPS + IFN-gamma, C. albicans (4 Candida/KC), peptidoglycan (1 micro g/ml) or M. tuberculosis extract significantly increased IL-8 gene expression after 3 h of treatment (P < 0.05). The increases over the 0-h level were 15-, 8-, 10.8- and 7-fold, respectively. The microbial compound-induced increase in IL-8 gene expression could be inhibited by anti-TLR2 and anti-TLR4 neutralizing antibodies, suggesting that TLRs are involved in the pathogen-induced expression of this pro-inflammatory cytokine. Our findings stress the importance of the role of keratinocytes as a component of innate immunity.

334 citations

Journal ArticleDOI
TL;DR: The findings suggest that P. acnes modulates the antimicrobial peptide and chemokine expression of keratinocytes and thereby contributes to the recruitment of inflammatory cells to the sites of infections.

316 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A novel wound model based on application of negative pressure and its effects for epidermal regeneration and immune cell behaviour is presented, which recapitulates the main features of epithelial wound regeneration, and can be applied for testing wound healing therapies and investigating underlying mechanisms.
Abstract: A large body of literature is available on wound healing in humans. Nonetheless, a standardized ex vivo wound model without disruption of the dermal compartment has not been put forward with compelling justification. Here, we present a novel wound model based on application of negative pressure and its effects for epidermal regeneration and immune cell behaviour. Importantly, the basement membrane remained intact after blister roof removal and keratinocytes were absent in the wounded area. Upon six days of culture, the wound was covered with one to three-cell thick K14+Ki67+ keratinocyte layers, indicating that proliferation and migration were involved in wound closure. After eight to twelve days, a multi-layered epidermis was formed expressing epidermal differentiation markers (K10, filaggrin, DSG-1, CDSN). Investigations about immune cell-specific manners revealed more T cells in the blister roof epidermis compared to normal epidermis. We identified several cell populations in blister roof epidermis and suction blister fluid that are absent in normal epidermis which correlated with their decrease in the dermis, indicating a dermal efflux upon negative pressure. Together, our model recapitulates the main features of epithelial wound regeneration, and can be applied for testing wound healing therapies and investigating underlying mechanisms.

6,378 citations

Journal ArticleDOI
TL;DR: The current knowledge of the molecular mechanisms underlying Drosophila defense reactions together with strategies evolved by pathogens to evade them are reviewed.
Abstract: To combat infection, the fruit fly Drosophila melanogaster relies on multiple innate defense reactions, many of which are shared with higher organisms. These reactions include the use of physical barriers together with local and systemic immune responses. First, epithelia, such as those beneath the cuticle, in the alimentary tract, and in tracheae, act both as a physical barrier and local defense against pathogens by producing antimicrobial peptides and reactive oxygen species. Second, specialized hemocytes participate in phagocytosis and encapsulation of foreign intruders in the hemolymph. Finally, the fat body, a functional equivalent of the mammalian liver, produces humoral response molecules including antimicrobial peptides. Here we review our current knowledge of the molecular mechanisms underlying Drosophila defense reactions together with strategies evolved by pathogens to evade them.

2,884 citations

Journal ArticleDOI
30 Mar 2012-Cell
TL;DR: The richness of the understanding of MYC is reviewed, highlighting new biological insights and opportunities for cancer therapies.

2,572 citations

Journal ArticleDOI
TL;DR: Anti-TNF strategies have three variants: a humanized chimeric anti–TNF- α monoclonal antibody, a fully human monocolonal anti-T NF- α antibody, and a human p75 TNF-receptor Fc fusion protein.

2,084 citations

Journal ArticleDOI
TL;DR: Melanogenesis is a highly structured system, active since early embryogenesis and capable of superselective functional regulation that may reach down to the cellular level represented by single melanocytes, and its significance extends beyond the mere assignment of a color trait.
Abstract: Cutaneous melanin pigment plays a critical role in camouflage, mimicry, social communication, and protection against harmful effects of solar radiation. Melanogenesis is under complex regulatory control by multiple agents interacting via pathways activated by receptor-dependent and -independent mechanisms, in hormonal, auto-, para-, or intracrine fashion. Because of the multidirectional nature and heterogeneous character of the melanogenesis modifying agents, its controlling factors are not organized into simple linear sequences, but they interphase instead in a multidimensional network, with extensive functional overlapping with connections arranged both in series and in parallel. The most important positive regulator of melanogenesis is the MC1 receptor with its ligands melanocortins and ACTH, whereas among the negative regulators agouti protein stands out, determining intensity of melanogenesis and also the type of melanin synthesized. Within the context of the skin as a stress organ, melanogenic activity serves as a unique molecular sensor and transducer of noxious signals and as regulator of local homeostasis. In keeping with these multiple roles, melanogenesis is controlled by a highly structured system, active since early embryogenesis and capable of superselective functional regulation that may reach down to the cellular level represented by single melanocytes. Indeed, the significance of melanogenesis extends beyond the mere assignment of a color trait.

1,737 citations