scispace - formally typeset
Search or ask a question

Showing papers by "Andras Kis published in 2011"


Journal ArticleDOI
TL;DR: Because monolayer MoS(2) has a direct bandgap, it can be used to construct interband tunnel FETs, which offer lower power consumption than classical transistors, and could also complement graphene in applications that require thin transparent semiconductors, such as optoelectronics and energy harvesting.
Abstract: Two-dimensional materials are attractive for use in next-generation nanoelectronic devices because, compared to one-dimensional materials, it is relatively easy to fabricate complex structures from them. The most widely studied two-dimensional material is graphene, both because of its rich physics and its high mobility. However, pristine graphene does not have a bandgap, a property that is essential for many applications, including transistors. Engineering a graphene bandgap increases fabrication complexity and either reduces mobilities to the level of strained silicon films or requires high voltages. Although single layers of MoS(2) have a large intrinsic bandgap of 1.8 eV (ref. 16), previously reported mobilities in the 0.5-3 cm(2) V(-1) s(-1) range are too low for practical devices. Here, we use a halfnium oxide gate dielectric to demonstrate a room-temperature single-layer MoS(2) mobility of at least 200 cm(2) V(-1) s(-1), similar to that of graphene nanoribbons, and demonstrate transistors with room-temperature current on/off ratios of 1 × 10(8) and ultralow standby power dissipation. Because monolayer MoS(2) has a direct bandgap, it can be used to construct interband tunnel FETs, which offer lower power consumption than classical transistors. Monolayer MoS(2) could also complement graphene in applications that require thin transparent semiconductors, such as optoelectronics and energy harvesting.

12,477 citations


Journal ArticleDOI
16 Nov 2011-ACS Nano
TL;DR: In this paper, the stiffness and breaking strength of monolayer MoS2, a new semiconducting analogue of graphene, was investigated. But the results were limited to the case of single and bilayer membranes, and the strength of strongest membranes was only 11% of its Young's modulus.
Abstract: We report on measurements of the stiffness and breaking strength of monolayer MoS2, a new semiconducting analogue of graphene. Single and bilayer MoS2 is exfoliated from bulk and transferred to a substrate containing an array of microfabricated circular holes. The resulting suspended, free-standing membranes are deformed and eventually broken using an atomic force microscope. We find that the in-plane stiffness of monolayer MoS2 is 180 ± 60 Nm–1, corresponding to an effective Young’s modulus of 270 ± 100 GPa, which is comparable to that of steel. Breaking occurs at an effective strain between 6 and 11% with the average breaking strength of 15 ± 3 Nm–1 (23 GPa). The strength of strongest monolayer membranes is 11% of its Young’s modulus, corresponding to the upper theoretical limit which indicates that the material can be highly crystalline and almost defect-free. Our results show that monolayer MoS2 could be suitable for a variety of applications such as reinforcing elements in composites and for fabricat...

2,111 citations


Journal ArticleDOI
10 Nov 2011-ACS Nano
TL;DR: This report reports on the first integrated circuit based on a two-dimensional semiconductor MoS(2) transistors, capable of operating as inverters, converting logical "1" into logical "0", with room-temperature voltage gain higher than 1, making them suitable for incorporation into digital circuits.
Abstract: Logic circuits and the ability to amplify electrical signals form the functional backbone of electronics along with the possibility to integrate multiple elements on the same chip. The miniaturization of electronic circuits is expected to reach fundamental limits in the near future. Two-dimensional materials such as single-layer MoS2 represent the ultimate limit of miniaturization in the vertical dimension, are interesting as building blocks of low-power nanoelectronic devices, and are suitable for integration due to their planar geometry. Because they are less than 1 nm thin, 2D materials in transistors could also lead to reduced short channel effects and result in fabrication of smaller and more power-efficient transistors. Here, we report on the first integrated circuit based on a two-dimensional semiconductor MoS2. Our integrated circuits are capable of operating as inverters, converting logical “1” into logical “0”, with room-temperature voltage gain higher than 1, making them suitable for incorporat...

1,244 citations


Journal ArticleDOI
TL;DR: Optimal imaging conditions for the optical detection of ultrathin, two-dimensional dichalcogenide nanocrystals containing single, double and triple layers of MoS(2), WSe(2) and NbSe( 2) are described.
Abstract: Dichalcogenides with the common formula MX2 are layered materials with electrical properties that range from semiconducting to superconducting. Here, we describe optimal imaging conditions for the optical detection of ultrathin, two-dimensional dichalcogenide nanocrystals containing single, double and triple layers of MoS2, WSe2 and NbSe2. A simple optical model is used to calculate the contrast for nanolayers deposited on wafers with varying thicknesses of SiO2. The model is extended for imaging using the green channel of a video camera. Using AFM and optical imaging we confirm that single layers of MoS2 and WSe2 can be detected on 90 and 270 nm SiO2 using optical means. By measuring contrast under broadband green illumination we are also able to distinguish between nanostructures containing single, double and triple layers of MoS2 and WSe2. We observe and discuss discrepancies in the case of NbSe2.

465 citations


Journal ArticleDOI
TL;DR: Electron microscopy shows that monolayer MoS2 displays long-range crystalline order, although surface roughening has been observed with ripples which can reach 1 nm in height, just as in the case of graphene, implying that similar mechanisms are responsible for the stability of both two-dimensional materials.
Abstract: Single-layer molybdenum disulfide (MoS2) is a newly emerging two-dimensional semiconductor with a potentially wide range of applications in the fields of nanoelectronics and energy harvesting. The fact that it can be exfoliated down to single-layer thickness makes MoS2 interesting both for practical applications and for fundamental research, where the structure and crystalline order of ultrathin MoS2 will have a strong influence on electronic, mechanical, and other properties. Here, we report on the transmission electron microscopy study of suspended single- and few-layer MoS2 membranes with thicknesses previously determined using both optical identification and atomic force microscopy. Electron microscopy shows that monolayer MoS2 displays long-range crystalline order, although surface roughening has been observed with ripples which can reach 1 nm in height, just as in the case of graphene, implying that similar mechanisms are responsible for the stability of both two-dimensional materials. The observed ...

324 citations