scispace - formally typeset
Search or ask a question
Author

Andre Bourdoux

Other affiliations: IMEC
Bio: Andre Bourdoux is an academic researcher from Katholieke Universiteit Leuven. The author has contributed to research in topics: MIMO & Radar. The author has an hindex of 29, co-authored 164 publications receiving 2433 citations. Previous affiliations of Andre Bourdoux include IMEC.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors focus on convergent 6G communication, localization and sensing systems by identifying key technology enablers, discussing their underlying challenges, implementation issues, and recommending potential solutions.
Abstract: Herein, we focus on convergent 6G communication, localization and sensing systems by identifying key technology enablers, discussing their underlying challenges, implementation issues, and recommending potential solutions. Moreover, we discuss exciting new opportunities for integrated localization and sensing applications, which will disrupt traditional design principles and revolutionize the way we live, interact with our environment, and do business. Regarding potential enabling technologies, 6G will continue to develop towards even higher frequency ranges, wider bandwidths, and massive antenna arrays. In turn, this will enable sensing solutions with very fine range, Doppler, and angular resolutions, as well as localization to cm-level degree of accuracy. Besides, new materials, device types, and reconfigurable surfaces will allow network operators to reshape and control the electromagnetic response of the environment. At the same time, machine learning and artificial intelligence will leverage the unprecedented availability of data and computing resources to tackle the biggest and hardest problems in wireless communication systems. As a result, 6G will be truly intelligent wireless systems that will provide not only ubiquitous communication but also empower high accuracy localization and high-resolution sensing services. They will become the catalyst for this revolution by bringing about a unique new set of features and service capabilities, where localization and sensing will coexist with communication, continuously sharing the available resources in time, frequency, and space. This work concludes by highlighting foundational research challenges, as well as implications and opportunities related to privacy, security, and trust.

224 citations

Posted Content
TL;DR: This white paper explores the road to implementing broadband connectivity in future 6G wireless systems, from extreme capacity with peak data rates up to 1 Tbps, to raising the typical data rates by orders-of-magnitude, to support broadband connectivity at railway speeds up to 1000 km/h.
Abstract: This white paper explores the road to implementing broadband connectivity in future 6G wireless systems. Different categories of use cases are considered, from extreme capacity with peak data rates up to 1 Tbps, to raising the typical data rates by orders-of-magnitude, to support broadband connectivity at railway speeds up to 1000 km/h. To achieve these goals, not only the terrestrial networks will be evolved but they will also be integrated with satellite networks, all facilitating autonomous systems and various interconnected structures. We believe that several categories of enablers at the infrastructure, spectrum, and protocol/ algorithmic levels are required to realize the intended broadband connectivity goals in 6G. At the infrastructure level, we consider ultra-massive MIMO technology (possibly implemented using holographic radio), intelligent reflecting surfaces, user-centric and scalable cell-free networking, integrated access and backhaul, and integrated space and terrestrial networks. At the spectrum level, the network must seamlessly utilize sub-6 GHz bands for coverage and spatial multiplexing of many devices, while higher bands will be used for pushing the peak rates of point-to-point links. The latter path will lead to THz communications complemented by visible light communications in specific scenarios. At the protocol/algorithmic level, the enablers include improved coding, modulation, and waveforms to achieve lower latencies, higher reliability, and reduced complexity. Different options will be needed to optimally support different use cases. The resource efficiency can be further improved by using various combinations of full-duplex radios, interference management based on rate-splitting, machine-learning-based optimization, coded caching, and broadcasting.

212 citations

Journal ArticleDOI
TL;DR: This paper investigates the use of micro-Doppler signatures retrieved from a low-power radar device to identify a set of persons based on their gait characteristics and proposes a robust feature learning approach based on deep convolutional neural networks.
Abstract: Contemporary surveillance systems mainly use video cameras as their primary sensor. However, video cameras possess fundamental deficiencies, such as the inability to handle low-light environments, poor weather conditions, and concealing clothing. In contrast, radar devices are able to sense in pitch-dark environments and to see through walls. In this paper, we investigate the use of micro-Doppler (MD) signatures retrieved from a low-power radar device to identify a set of persons based on their gait characteristics. To that end, we propose a robust feature learning approach based on deep convolutional neural networks. Given that we aim at providing a solution for a real-world problem, people are allowed to walk around freely in two different rooms. In this setting, the IDentification with Radar data data set is constructed and published, consisting of 150 min of annotated MD data equally spread over five targets. Through experiments, we investigate the effectiveness of both the Doppler and time dimension, showing that our approach achieves a classification error rate of 24.70% on the validation set and 21.54% on the test set for the five targets used. When experimenting with larger time windows, we are able to further lower the error rate.

166 citations

Proceedings ArticleDOI
08 Sep 2003
TL;DR: In this article, the non-reciprocity of the base station analog hardware, which is part of the channel, introduces a very high level of multi-user interference and quantify the effect of the nonreciprocal by means of simulations.
Abstract: Channel reciprocity is needed in SDMA or MIMO downlink pre-filtering when the channel knowledge is acquired in the uplink. We first show analytically that the non-reciprocity of the base station analog hardware, which is part of the channel, introduces a very high level of multi-user interference and quantify the effect of the non-reciprocity by means of simulations. We then propose a novel calibration technique at the base station that enables to compensate for the non-reciprocity and reduce the MUI to a negligible value while having a low implementation cost.

136 citations

Proceedings ArticleDOI
23 May 2010
TL;DR: A joint design of transmit-receive mixed analog/digital beamformers that aim at maximizing the received average signal-to-noise-ratio (SNR) and shows better performance than state-of-art solutions, which combine antenna selection techniques and digital beamforming.
Abstract: Multi-antenna architectures, where beamforming processing is shared between analog and digital, are of great interest for future multi-Gbps wireless systems operating at 60 GHz. In this spectrum band, wireless systems can integrate large antenna arrays in a very small volume thanks to a wavelength of about 5 mm and thus provide the required gain to meet the severe link budget. However, the cost and power consumption of an analog front-end (AFE) chain, that carries out translation between radio frequency (RF) and digital baseband, are too high at 60 GHz to afford one AFE for each antenna. In this paper, we consider low cost multi-antenna architectures with a lower number of AFE chains than antenna elements. We propose a joint design of transmit-receive mixed analog/digital beamformers that aim at maximizing the received average signal-to-noise-ratio (SNR). The proposed scheme shows better performance than state-of-art solutions, which combine antenna selection techniques and digital beamforming.

104 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This paper considers transmit precoding and receiver combining in mmWave systems with large antenna arrays and develops algorithms that accurately approximate optimal unconstrained precoders and combiners such that they can be implemented in low-cost RF hardware.
Abstract: Millimeter wave (mmWave) signals experience orders-of-magnitude more pathloss than the microwave signals currently used in most wireless applications and all cellular systems. MmWave systems must therefore leverage large antenna arrays, made possible by the decrease in wavelength, to combat pathloss with beamforming gain. Beamforming with multiple data streams, known as precoding, can be used to further improve mmWave spectral efficiency. Both beamforming and precoding are done digitally at baseband in traditional multi-antenna systems. The high cost and power consumption of mixed-signal devices in mmWave systems, however, make analog processing in the RF domain more attractive. This hardware limitation restricts the feasible set of precoders and combiners that can be applied by practical mmWave transceivers. In this paper, we consider transmit precoding and receiver combining in mmWave systems with large antenna arrays. We exploit the spatial structure of mmWave channels to formulate the precoding/combining problem as a sparse reconstruction problem. Using the principle of basis pursuit, we develop algorithms that accurately approximate optimal unconstrained precoders and combiners such that they can be implemented in low-cost RF hardware. We present numerical results on the performance of the proposed algorithms and show that they allow mmWave systems to approach their unconstrained performance limits, even when transceiver hardware constraints are considered.

3,146 citations

Proceedings Article
01 Jan 1991
TL;DR: It is concluded that properly augmented and power-controlled multiple-cell CDMA (code division multiple access) promises a quantum increase in current cellular capacity.
Abstract: It is shown that, particularly for terrestrial cellular telephony, the interference-suppression feature of CDMA (code division multiple access) can result in a many-fold increase in capacity over analog and even over competing digital techniques. A single-cell system, such as a hubbed satellite network, is addressed, and the basic expression for capacity is developed. The corresponding expressions for a multiple-cell system are derived. and the distribution on the number of users supportable per cell is determined. It is concluded that properly augmented and power-controlled multiple-cell CDMA promises a quantum increase in current cellular capacity. >

2,951 citations

Journal ArticleDOI
05 Feb 2014
TL;DR: Measurements and capacity studies are surveyed to assess mmW technology with a focus on small cell deployments in urban environments and it is shown that mmW systems can offer more than an order of magnitude increase in capacity over current state-of-the-art 4G cellular networks at current cell densities.
Abstract: Millimeter-wave (mmW) frequencies between 30 and 300 GHz are a new frontier for cellular communication that offers the promise of orders of magnitude greater bandwidths combined with further gains via beamforming and spatial multiplexing from multielement antenna arrays. This paper surveys measurements and capacity studies to assess this technology with a focus on small cell deployments in urban environments. The conclusions are extremely encouraging; measurements in New York City at 28 and 73 GHz demonstrate that, even in an urban canyon environment, significant non-line-of-sight (NLOS) outdoor, street-level coverage is possible up to approximately 200 m from a potential low-power microcell or picocell base station. In addition, based on statistical channel models from these measurements, it is shown that mmW systems can offer more than an order of magnitude increase in capacity over current state-of-the-art 4G cellular networks at current cell densities. Cellular systems, however, will need to be significantly redesigned to fully achieve these gains. Specifically, the requirement of highly directional and adaptive transmissions, directional isolation between links, and significant possibilities of outage have strong implications on multiple access, channel structure, synchronization, and receiver design. To address these challenges, the paper discusses how various technologies including adaptive beamforming, multihop relaying, heterogeneous network architectures, and carrier aggregation can be leveraged in the mmW context.

2,452 citations

Journal ArticleDOI
TL;DR: This article provides an overview of signal processing challenges in mmWave wireless systems, with an emphasis on those faced by using MIMO communication at higher carrier frequencies.
Abstract: Communication at millimeter wave (mmWave) frequencies is defining a new era of wireless communication. The mmWave band offers higher bandwidth communication channels versus those presently used in commercial wireless systems. The applications of mmWave are immense: wireless local and personal area networks in the unlicensed band, 5G cellular systems, not to mention vehicular area networks, ad hoc networks, and wearables. Signal processing is critical for enabling the next generation of mmWave communication. Due to the use of large antenna arrays at the transmitter and receiver, combined with radio frequency and mixed signal power constraints, new multiple-input multiple-output (MIMO) communication signal processing techniques are needed. Because of the wide bandwidths, low complexity transceiver algorithms become important. There are opportunities to exploit techniques like compressed sensing for channel estimation and beamforming. This article provides an overview of signal processing challenges in mmWave wireless systems, with an emphasis on those faced by using MIMO communication at higher carrier frequencies.

2,380 citations

Journal ArticleDOI
TL;DR: Detailed spatial statistical models of the channels are derived and it is found that, even in highly non-line-of-sight environments, strong signals can be detected 100-200 m from potential cell sites, potentially with multiple clusters to support spatial multiplexing.
Abstract: With the severe spectrum shortage in conventional cellular bands, millimeter wave (mmW) frequencies between 30 and 300 GHz have been attracting growing attention as a possible candidate for next-generation micro- and picocellular wireless networks. The mmW bands offer orders of magnitude greater spectrum than current cellular allocations and enable very high-dimensional antenna arrays for further gains via beamforming and spatial multiplexing. This paper uses recent real-world measurements at 28 and 73 GHz in New York, NY, USA, to derive detailed spatial statistical models of the channels and uses these models to provide a realistic assessment of mmW micro- and picocellular networks in a dense urban deployment. Statistical models are derived for key channel parameters, including the path loss, number of spatial clusters, angular dispersion, and outage. It is found that, even in highly non-line-of-sight environments, strong signals can be detected 100-200 m from potential cell sites, potentially with multiple clusters to support spatial multiplexing. Moreover, a system simulation based on the models predicts that mmW systems can offer an order of magnitude increase in capacity over current state-of-the-art 4G cellular networks with no increase in cell density from current urban deployments.

2,102 citations