scispace - formally typeset
Search or ask a question
Author

André Crosnier

Bio: André Crosnier is an academic researcher from University of Montpellier. The author has contributed to research in topics: Robot & Humanoid robot. The author has an hindex of 15, co-authored 40 publications receiving 889 citations. Previous affiliations of André Crosnier include Centre national de la recherche scientifique.

Papers
More filters
Journal ArticleDOI
Abstract: Although the concept of industrial cobots dates back to 1999, most present day hybrid human-machine assembly systems are merely weight compensators. Here, we present results on the development of a collaborative human-robot manufacturing cell for homokinetic joint assembly. The robot alternates active and passive behaviours during assembly, to lighten the burden on the operator in the first case, and to comply to his/her needs in the latter. Our approach can successfully manage direct physical contact between robot and human, and between robot and environment. Furthermore, it can be applied to standard position (and not torque) controlled robots, common in the industry. The approach is validated in a series of assembly experiments. The human workload is reduced, diminishing the risk of strain injuries. Besides, a complete risk analysis indicates that the proposed setup is compatible with the safety standards, and could be certified.

449 citations

Proceedings ArticleDOI
09 Sep 2012
TL;DR: A control scheme that allows a humanoid robot to perform a complex transportation scenario jointly with a human partner and takes over the leadership of the task to complete the scenario.
Abstract: In this paper, we propose a control scheme that allows a humanoid robot to perform a complex transportation scenario jointly with a human partner. At first, the robot guesses the human partner's intentions to proactively participate to the task. In a second phase, the human-robot dyad switches roles: the robot takes over the leadership of the task to complete the scenario. During this last phase, the robot is remotely controlled with a joystick. The scenario is realized on a real HRP-2 humanoid robot to assess the overall approach.

71 citations

Journal ArticleDOI
01 Jan 2020
TL;DR: This letter proposes a framework that allows the robot to use environmental contacts for shaping the cable, and introduces an index to quantify the contact mobility of a cable with a circular contact.
Abstract: Humans use contacts in the environment to modify the shape of deformable objects. Yet, few papers have studied the use of contacts in robotic manipulation. In this letter, we investigate the problem of robotic manipulation of cables with environmental contacts. Instead of avoiding contacts, we propose a framework that allows the robot to use them for shaping the cable. We introduce an index to quantify the contact mobility of a cable with a circular contact. Based on this index, we present a planner to plan robot motions. The planner is aided by a vision-based contact detector. The framework is validated with robot experiments on different desired cable configurations.

69 citations

Proceedings ArticleDOI
01 Oct 2018
TL;DR: This paper proposes a framework for cable shapes manipulation with multiple robot manipulators that is parameterized by a Fourier series and a velocity control law is applied on the robot to deform the cable into the desired shape.
Abstract: Deforming a cable to a desired (reachable) shape is a trivial task for a human to do without even knowing the internal dynamics of the cable. This paper proposes a framework for cable shapes manipulation with multiple robot manipulators. The shape is parameterized by a Fourier series. A local deformation model of the cable is estimated on-line with the shape parameters. Using the deformation model, a velocity control law is applied on the robot to deform the cable into the desired shape. Experiments on a dual-arm manipulator are conducted to validate the framework.

62 citations

Proceedings ArticleDOI
24 Dec 2012
TL;DR: From the study of how human dyads achieve such a task, a control law for physical interaction is developed that unifies standalone and collaborative modes for trajectory-based tasks.
Abstract: In this paper, we propose a control scheme that allows a humanoid robot to perform a transportation task jointly with a human partner. From the study of how human dyads achieve such a task, we have developed a control law for physical interaction that unifies standalone and collaborative (leader and follower) modes for trajectory-based tasks. We present it in the case of a linear impedance controller but it can be generalized to more complex impedances. Desired trajectories are decomposed into sequences of elementary motion primitives. We implemented this model with a Finite State Machine associated with a reactive pattern generator. First experiments conducted on a real HRP-2 humanoid robot assess the overall approach.

60 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present a systematic analysis of the sustainability functions of Industry 4.0, including energy sustainability, harmful emission reduction, and social welfare improvement, and show that sophisticated precedence relationships exist among various sustainability functions.

664 citations

Journal ArticleDOI
TL;DR: An extensive review on human–robot collaboration in industrial environment is provided, with specific focus on issues related to physical and cognitive interaction, and the commercially available solutions are presented.

632 citations

Book
26 Jun 2015
TL;DR: A historical perspective of the registration problem is given and it is shown that the plethora of solutions can be organized and differentiated according to a few elements and guidelines for the choice of geometric registration configuration are provided.
Abstract: The topic of this review is geometric registration in robotics. Registrationalgorithms associate sets of data into a common coordinate system.They have been used extensively in object reconstruction, inspection,medical application, and localization of mobile robotics. We focus onmobile robotics applications in which point clouds are to be registered.While the underlying principle of those algorithms is simple, manyvariations have been proposed for many different applications. In thisreview, we give a historical perspective of the registration problem andshow that the plethora of solutions can be organized and differentiatedaccording to a few elements. Accordingly, we present a formalizationof geometric registration and cast algorithms proposed in the literatureinto this framework. Finally, we review a few applications of thisframework in mobile robotics that cover different kinds of platforms,environments, and tasks. These examples allow us to study the specificrequirements of each use case and the necessary configuration choicesleading to the registration implementation. Ultimately, the objective ofthis review is to provide guidelines for the choice of geometric registrationconfiguration.

558 citations

Journal ArticleDOI
TL;DR: In this article, the authors tried to read modelling and control of robot manipulators as one of the reading material to finish quickly, and they found that reading book can be a great choice when having no friends and activities.
Abstract: Feel lonely? What about reading books? Book is one of the greatest friends to accompany while in your lonely time. When you have no friends and activities somewhere and sometimes, reading book can be a great choice. This is not only for spending the time, it will increase the knowledge. Of course the b=benefits to take will relate to what kind of book that you are reading. And now, we will concern you to try reading modelling and control of robot manipulators as one of the reading material to finish quickly.

517 citations

Journal ArticleDOI
TL;DR: The main purpose of this paper is to review the state-of-the-art on intermediate human–robot interfaces (bi-directional), robot control modalities, system stability, benchmarking and relevant use cases, and to extend views on the required future developments in the realm of human-robot collaboration.
Abstract: Recent technological advances in hardware design of the robotic platforms enabled the implementation of various control modalities for improved interactions with humans and unstructured environments. An important application area for the integration of robots with such advanced interaction capabilities is human---robot collaboration. This aspect represents high socio-economic impacts and maintains the sense of purpose of the involved people, as the robots do not completely replace the humans from the work process. The research community's recent surge of interest in this area has been devoted to the implementation of various methodologies to achieve intuitive and seamless human---robot-environment interactions by incorporating the collaborative partners' superior capabilities, e.g. human's cognitive and robot's physical power generation capacity. In fact, the main purpose of this paper is to review the state-of-the-art on intermediate human---robot interfaces (bi-directional), robot control modalities, system stability, benchmarking and relevant use cases, and to extend views on the required future developments in the realm of human---robot collaboration.

452 citations