scispace - formally typeset
Search or ask a question
Author

André Iovane

Bio: André Iovane is an academic researcher from French Institute of Health and Medical Research. The author has contributed to research in topics: Isolated hypogonadotropic hypogonadism & Hypogonadotropic hypogonadism. The author has an hindex of 2, co-authored 3 publications receiving 203 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: GPR54 inactivation does not impede neuroendocrine onset of puberty; rather, it delays and slows down pubertal maturation of the gonadotropic axis activation.
Abstract: Context: Loss of function of the G protein-coupled receptor of kisspeptins (GPR54) was recently described as a new cause of isolated hypogonadotropic hypogonadism. In vivo studies performed in several species have confirmed the major role of kisspeptins in neuroendocrine regulation of the gonadotropic axis and therefore sexual maturation. Objective: The objective of this study was to specify the exact contribution of kisspeptins and GPR54 to the initiation of puberty in humans. Design: Detailed neuroendocrine descriptions were performed in five patients with isolated hypogonadotropic hypogonadism bearing a new GPR54-inactivating mutation. Results: A homozygous mutation (T305C) leading to a leucine substitution with proline (L102P) was found in the five affected patients. This substitution completely inhibited GPR54 signaling. Phenotypic analysis revealed variable expressivity in the same family, either partial or complete gonadotropic deficiency. LH pulsatility analysis showed peaks with normal frequency ...

166 citations

Journal ArticleDOI
TL;DR: Genetic studies have opened up a new chapter in the physiology and the pharmacology of the gonadotropic axis and FGFR1 loss-of-function mutations were reported in Kallmann syndrome whereas inactivating mutations of GPR54 were described in the idiopathic form of the Gonadotropic deficiency.
Abstract: Isolated gonadotropic deficiency or isolated hypogonadotropic hypogonadism is defined as a low sexual hormone secretion by the gonads associated with low LH and FSH plasma levels. Kallmann syndrome is defined as a congenital isolated gonadotropic deficiency associated with anosmia whereas the phenotype of the idiopathic form is limited to the gonadotropic axis. For several years, it has been known that mutations of the KAL-1 gene or loss-of-function mutations of GnRH receptor did not explain all familial cases of isolated gonadotropic deficiency with or without anosmia. Thus the existence of other genes playing a major role in the physiology of the gonadotropic axis was highly suggested. In 2003, fibroblast growth factor receptor 1 (FGFR1) and GPR54 were shown to be two of these genes. FGFR1 loss-of-function mutations were reported in Kallmann syndrome whereas inactivating mutations of GPR54 were described in the idiopathic form of the gonadotropic deficiency. These genetic studies have opened up a new chapter in the physiology and the pharmacology of the gonadotropic axis.

40 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Kisspeptin signaling in the brain has been implicated in mediating the negative feedback action of sex steroids on gonadotropin secretion, generating the preovulatory GnRH/LH surge, triggering and guiding the tempo of sexual maturation at puberty, controlling seasonal reproduction, and restraining reproductive activity during lactation.
Abstract: Kisspeptin (a product of the Kiss1 gene) and its receptor (GPR54 or Kiss1r) have emerged as key players in the regulation of reproduction. Mutations in humans or genetically targeted deletions in mice of either Kiss1 or Kiss1r cause profound hypogonadotropic hypogonadism. Neurons that express Kiss1/kisspeptin are found in discrete nuclei in the hypothalamus, as well as other brain regions in many vertebrates, and their distribution, regulation, and function varies widely across species. Kisspeptin neurons directly innervate and stimulate GnRH neurons, which are the final common pathway through which the brain regulates reproduction. Kisspeptin neurons are sexually differentiated with respect to cell number and transcriptional activity in certain brain nuclei, and some kisspeptin neurons express other cotransmitters, including dynorphin and neurokinin B (whose physiological significance is unknown). Kisspeptin neurons express the estrogen receptor and the androgen receptor, and these cells are direct targets for the action of gonadal steroids in both male and female animals. Kisspeptin signaling in the brain has been implicated in mediating the negative feedback action of sex steroids on gonadotropin secretion, generating the preovulatory GnRH/LH surge, triggering and guiding the tempo of sexual maturation at puberty, controlling seasonal reproduction, and restraining reproductive activity during lactation. Kisspeptin signaling may also serve diverse functions outside of the classical realm of reproductive neuroendocrinology, including the regulation of metastasis in certain cancers, vascular dynamics, placental physiology, and perhaps even higher-order brain function.

761 citations

Journal ArticleDOI
TL;DR: This review aims to provide a comprehensive account of the state-of-the-art in the field of kisspeptin physiology by covering in-depth the consensus knowledge on the major molecular features, biological effects, and mechanisms of action ofkisspeptins in mammals and, to a lesser extent, in nonmammalian vertebrates.
Abstract: Procreation is essential for survival of species. Not surprisingly, complex neuronal networks have evolved to mediate the diverse internal and external environmental inputs that regulate reproduction in vertebrates. Ultimately, these regulatory factors impinge, directly or indirectly, on a final common pathway, the neurons producing the gonadotropin-releasing hormone (GnRH), which stimulates pituitary gonadotropin secretion and thereby gonadal function. Compelling evidence, accumulated in the last few years, has revealed that kisspeptins, a family of neuropeptides encoded by the Kiss1 gene and produced mainly by neuronal clusters at discrete hypothalamic nuclei, are pivotal upstream regulators of GnRH neurons. As such, kisspeptins have emerged as important gatekeepers of key aspects of reproductive maturation and function, from sexual differentiation of the brain and puberty onset to adult regulation of gonadotropin secretion and the metabolic control of fertility. This review aims to provide a comprehensive account of the state-of-the-art in the field of kisspeptin physiology by covering in-depth the consensus knowledge on the major molecular features, biological effects, and mechanisms of action of kisspeptins in mammals and, to a lesser extent, in nonmammalian vertebrates. This review will also address unsolved and contentious issues to set the scene for future research challenges in the area. By doing so, we aim to endow the reader with a critical and updated view of the physiological roles and potential translational relevance of kisspeptins in the integral control of reproductive function.

614 citations

Journal ArticleDOI
TL;DR: An autosomal dominant GPR54 mutation--the substitution of proline for arginine at codon 386 (Arg386Pro)-- is identified in an adopted girl with idiopathic central precocious puberty (whose biologic family was not available for genetic studies).
Abstract: Gonadotropin-dependent, or central, precocious puberty is caused by early maturation of the hypothalamic–pituitary–gonadal axis. In girls, this condition is most often idiopathic. Recently, a G protein–coupled receptor, GPR54, and its ligand, kisspeptin, were described as an excitatory neuroregulator system for the secretion of gonadotropin-releasing hormone (GnRH). In this study, we have identified an autosomal dominant GPR54 mutation — the substitution of proline for arginine at codon 386 (Arg386Pro) — in an adopted girl with idiopathic central precocious puberty (whose biologic family was not available for genetic studies). In vitro studies have shown that this mutation leads to prolonged activation of intracellular signaling pathways in response to kisspeptin. The Arg386Pro mutant appears to be associated with central precocious puberty.

510 citations

Journal ArticleDOI
TL;DR: Both Kiss1 and Gpr54 knockout mice have abnormal sexual maturation consistent with hypog onadotropic hypogonadism, although Kiss1 knockout mice appear to be less severely affected than their receptor counterparts.
Abstract: The G protein-coupled receptor Gpr54 and its ligand metastin (derived from the Kiss1 gene product kisspeptin) are key gatekeepers of sexual maturation. Gpr54 knockout mice demonstrate hypogonadotropic hypogonadism, but until recently, the phenotype of Kiss1 knockout mice was unknown. This report describes the reproductive phenotypes of mice carrying targeted deletions of Kiss1 or Gpr54 on the same genetic background. Both Kiss1 and Gpr54 knockout mice are viable but infertile and have abnormal sexual maturation; the majority of males lack preputial separation, and females have delayed vaginal opening and absence of estrous cycling. Kiss1 and Gpr54 knockout males have significantly smaller testes compared with controls. Gpr54 knockout females have smaller ovaries and uteri than wild-type females. However, Kiss1 knockout females demonstrate two distinct phenotypes: half have markedly reduced gonadal weights similar to those of Gpr54 knockout mice, whereas half exhibit persistent vaginal cornification and have gonadal weights comparable with those of wild-type females. FSH levels in both Kiss1 and Gpr54 knockout males and females are significantly lower than in controls. When injected with mouse metastin 43-52, a Gpr54 agonist, Gpr54 knockout mice fail to increase gonadotropins, whereas Kiss1 knockout mice respond with increased gonadotropin levels. In summary, both Kiss1 and Gpr54 knockout mice have abnormal sexual maturation consistent with hypogonadotropic hypogonadism, although Kiss1 knockout mice appear to be less severely affected than their receptor counterparts. Kiss1 knockout females demonstrate a bimodal phenotypic variability, with some animals having higher gonadal weight, larger vaginal opening, and persistent vaginal cornification.

478 citations

Journal ArticleDOI
TL;DR: The development of kisspeptin antagonists provides a valuable tool for investigating the physiological and pathophysiological roles ofkisspeptin in the regulation of reproduction and could offer a unique therapeutic agent for treating hormone-dependent disorders of reproduction, including precocious puberty, endometriosis, and metastatic prostate cancer.
Abstract: Neurons that produce gonadotropin-releasing hormone (GnRH) are the final common pathway by which the brain regulates reproduction. GnRH neurons are regulated by an afferent network of kisspeptin-producing neurons. Kisspeptin binds to its cognate receptor on GnRH neurons and stimulates their activity, which in turn provides an obligatory signal for GnRH secretion, thus gating down-stream events supporting reproduction. We have developed kisspeptin antagonists to facilitate the direct determination of the role of kisspeptin neurons in the neuroendocrine regulation of reproduction. In vitro and in vivo studies of analogues of kisspeptin-10 with amino substitutions have identified several potent and specific antagonists. A selected antagonist was shown to inhibit the firing of GnRH neurons in the brain of the mouse and to reduce pulsatile GnRH secretion in female pubertal monkeys; the later supporting a key role of kisspeptin in puberty onset. This analog also inhibited the kisspeptin-induced release of luteinizing hormone (LH) in rats and mice and blocked the postcastration rise in LH in sheep, rats, and mice, suggesting that kisspeptin neurons mediate the negative feedback effect of sex steroids on gonadotropin secretion in mammals. The development of kisspeptin antagonists provides a valuable tool for investigating the physiological and pathophysiological roles of kisspeptin in the regulation of reproduction and could offer a unique therapeutic agent for treating hormone-dependent disorders of reproduction, including precocious puberty, endometriosis, and metastatic prostate cancer.

339 citations