scispace - formally typeset
Search or ask a question
Author

Andre K. Geim

Bio: Andre K. Geim is an academic researcher from University of Manchester. The author has contributed to research in topics: Graphene & Magnetic field. The author has an hindex of 125, co-authored 445 publications receiving 206833 citations. Previous affiliations of Andre K. Geim include University of Nottingham & Russian Academy of Sciences.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, it was shown that stable zones always exist on the axis of a field with rotational symmetry, and include the inflection point of the magnitude of the field.
Abstract: Diamagnetic objects are repelled by magnetic fields. If the fields are strong enough, this repulsion can balance gravity, and objects levitated in this way can be held in stable equilibrium, apparently violating Earnshaw's theorem. In fact Earnshaw's theorem does not apply to induced magnetism, and it is possible for the total energy (gravitational+magnetic) to possess a minimum. General stability conditions are derived, and it is shown that stable zones always exist on the axis of a field with rotational symmetry, and include the inflection point of the magnitude of the field. For the field inside a solenoid, the zone is calculated in detail; if the solenoid is long, the zone is centred on the top end, and its vertical extent is about half the radius of the solenoid. The theory explains recent experiments by Geimet al, in which a variety of objects (one of which was a living frog) was levitated in a field of about 16 T. Similar ideas explain the stability of a spinning magnet (Levitron TM ) above a magnetized base plate. Stable levitation

435 citations

Journal ArticleDOI
02 Nov 2009-Small
TL;DR: In this paper, a cantilever-beam arrangement was used to examine the structural properties of graphene flakes under both tension and compression using two sets of samples, one consisting of flakes just supported on a plastic bar and the other consisting of flake embedded within the substrate.
Abstract: Themechanical behaviorof grapheneflakesunderboth tension and compression is examined using a cantilever-beam arrangement. Twodifferent sets of samples are employed.One consists of flakes just supported on a plastic bar. The other consists of flakesembeddedwithin theplastic substrate.Bymonitoring the shift of the 2DRaman linewith strain, information on the stress transfer efficiency as a function of stress sign and monolayer support are obtained. In tension, the embedded flake seems to sustain strains up to 1.3%, whereas in compression there is an indication of flake buckling at about 0.7% strain. The retainment of such a high critical buckling strain confirms the relative high flexural rigidity of the embedded monolayer. The mechanical strength and stiffness of crystalline materials are normally governed by the strength and stiffness

425 citations

Journal ArticleDOI
TL;DR: A remedial approach based on cleavage, transfer, alignment, and encapsulation of air-sensitive crystals, all inside a controlled inert atmosphere, which offers a venue to significantly expand the range of experimentally accessible two-dimensional crystals and their heterostructures.
Abstract: Many layered materials can be cleaved down to individual atomic planes, similar to graphene, but only a small minority of them are stable under ambient conditions. The rest react and decompose in air, which has severely hindered their investigation and potential applications. Here we introduce a remedial approach based on cleavage, transfer, alignment, and encapsulation of air-sensitive crystals, all inside a controlled inert atmosphere. To illustrate the technology, we choose two archetypal two-dimensional crystals that are of intense scientific interest but are unstable in air: black phosphorus and niobium diselenide. Our field-effect devices made from their monolayers are conductive and fully stable under ambient conditions, which is in contrast to the counterparts processed in air. NbSe2 remains superconducting down to the monolayer thickness. Starting with a trilayer, phosphorene devices reach sufficiently high mobilities to exhibit Landau quantization. The approach offers a venue to significantly ex...

411 citations

Journal ArticleDOI
TL;DR: The retainment of such a high critical buckling strain confirms the relative high flexural rigidity of the embedded monolayer.
Abstract: The mechanical behaviour of graphene flakes under both tension and compression is examined using a cantilever-beam arrangement. Two different sets of samples were employed involving flakes just supported on a plastic bar but also embedded within the plastic substrate. By monitoring the shift of the 2D Raman line with strain, information on the stress transfer efficiency as a function of stress sign and monolayer support were obtained. In tension, the embedded flake seems to sustain strains up to 1.3%, whereas in compression there is an indication of flake buckling at about 0.7% strain. The retainment of such a high critical buckling strain confirms the relative high flexural rigidity of the embedded monolayer.

397 citations

Journal ArticleDOI
27 Oct 2017-Science
TL;DR: This work reports ion transport through ultimately narrow slits that are fabricated by effectively removing a single atomic plane from a bulk crystal, and finds that ions with hydrated diameters larger than the slit size can still permeate through, albeit with reduced mobility.
Abstract: In the field of nanofluidics, it has been an ultimate but seemingly distant goal to controllably fabricate capillaries with dimensions approaching the size of small ions and water molecules. We report ion transport through ultimately narrow slits that are fabricated by effectively removing a single atomic plane from a bulk crystal. The atomically flat angstrom-scale slits exhibit little surface charge, allowing elucidation of the role of steric effects. We find that ions with hydrated diameters larger than the slit size can still permeate through, albeit with reduced mobility. The confinement also leads to a notable asymmetry between anions and cations of the same diameter. Our results provide a platform for studying the effects of angstrom-scale confinement, which is important for the development of nanofluidics, molecular separation, and other nanoscale technologies.

372 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Abstract: Graphene is a rapidly rising star on the horizon of materials science and condensed-matter physics. This strictly two-dimensional material exhibits exceptionally high crystal and electronic quality, and, despite its short history, has already revealed a cornucopia of new physics and potential applications, which are briefly discussed here. Whereas one can be certain of the realness of applications only when commercial products appear, graphene no longer requires any further proof of its importance in terms of fundamental physics. Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena, some of which are unobservable in high-energy physics, can now be mimicked and tested in table-top experiments. More generally, graphene represents a conceptually new class of materials that are only one atom thick, and, on this basis, offers new inroads into low-dimensional physics that has never ceased to surprise and continues to provide a fertile ground for applications.

35,293 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: In this paper, the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations, are discussed.
Abstract: This article reviews the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations. The Dirac electrons can be controlled by application of external electric and magnetic fields, or by altering sample geometry and/or topology. The Dirac electrons behave in unusual ways in tunneling, confinement, and the integer quantum Hall effect. The electronic properties of graphene stacks are discussed and vary with stacking order and number of layers. Edge (surface) states in graphene depend on the edge termination (zigzag or armchair) and affect the physical properties of nanoribbons. Different types of disorder modify the Dirac equation leading to unusual spectroscopic and transport properties. The effects of electron-electron and electron-phonon interactions in single layer and multilayer graphene are also presented.

20,824 citations

Journal ArticleDOI
10 Nov 2005-Nature
TL;DR: This study reports an experimental study of a condensed-matter system (graphene, a single atomic layer of carbon) in which electron transport is essentially governed by Dirac's (relativistic) equation and reveals a variety of unusual phenomena that are characteristic of two-dimensional Dirac fermions.
Abstract: Quantum electrodynamics (resulting from the merger of quantum mechanics and relativity theory) has provided a clear understanding of phenomena ranging from particle physics to cosmology and from astrophysics to quantum chemistry. The ideas underlying quantum electrodynamics also influence the theory of condensed matter, but quantum relativistic effects are usually minute in the known experimental systems that can be described accurately by the non-relativistic Schrodinger equation. Here we report an experimental study of a condensed-matter system (graphene, a single atomic layer of carbon) in which electron transport is essentially governed by Dirac's (relativistic) equation. The charge carriers in graphene mimic relativistic particles with zero rest mass and have an effective 'speed of light' c* approximately 10(6) m s(-1). Our study reveals a variety of unusual phenomena that are characteristic of two-dimensional Dirac fermions. In particular we have observed the following: first, graphene's conductivity never falls below a minimum value corresponding to the quantum unit of conductance, even when concentrations of charge carriers tend to zero; second, the integer quantum Hall effect in graphene is anomalous in that it occurs at half-integer filling factors; and third, the cyclotron mass m(c) of massless carriers in graphene is described by E = m(c)c*2. This two-dimensional system is not only interesting in itself but also allows access to the subtle and rich physics of quantum electrodynamics in a bench-top experiment.

18,958 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations