scispace - formally typeset
Search or ask a question
Author

Andre K. Geim

Bio: Andre K. Geim is an academic researcher from University of Manchester. The author has contributed to research in topics: Graphene & Magnetic field. The author has an hindex of 125, co-authored 445 publications receiving 206833 citations. Previous affiliations of Andre K. Geim include University of Nottingham & Russian Academy of Sciences.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper , the authors proposed a method to solve the problem of the "missing link" problem in the context of cyber-physical health management, which is protected by copyright.
Abstract: xxxx. This article is protected by copyright. All rights reserved.

13 citations

Posted Content
TL;DR: In this article, the authors reported on controlled electrochemical modification of graphene such that its conductance changes by more than six orders of magnitude, which enables reversible bipolar switching devices, and demonstrated that the demonstrated electrochemical field effect devices are viable candidates for future logic circuits, nonvolatile memories and novel neuromorphic processing concepts.
Abstract: Conventional field effect transistor operation in graphene is limited by its zero gap and minimum quantum conductivity. In this work, we report on controlled electrochemical modification of graphene such that its conductance changes by more than six orders of magnitude, which enables reversible bipolar switching devices. The effect is explained by a chemical reaction of graphene with hydrogen (H+) and hydroxyl (OH-), which are catalytically generated from water molecules in the sub-stochiometric silicon oxide gate dielectric. The reactive species attach to graphene making it nonconductive but the process can subsequently be reversed by short current pulses that cause rapid local annealing. We believe that the demonstrated electrochemical field effect devices are viable candidates for future logic circuits, non-volatile memories and novel neuromorphic processing concepts.

13 citations

Posted Content
TL;DR: In this paper, the authors used single-electron transistor imaging of electronic flow in high-mobility graphene Corbino disk devices to answer the question whether an electronic fluid can radically break the fundamental Landauer-Sharvin limit.
Abstract: Electrical resistance usually originates from lattice imperfections. However, even a perfect lattice has a fundamental resistance limit, given by the Landauer conductance caused by a finite number of propagating electron modes. This resistance, shown by Sharvin to appear at the contacts of electronic devices, sets the ultimate conductance limit of non-interacting electrons. Recent years have seen growing evidence of hydrodynamic electronic phenomena, prompting recent theories to ask whether an electronic fluid can radically break the fundamental Landauer-Sharvin limit. Here, we use single-electron transistor imaging of electronic flow in high-mobility graphene Corbino disk devices to answer this question. First, by imaging ballistic flows at liquid-helium temperatures, we observe a Landauer-Sharvin resistance that does not appear at the contacts but is instead distributed throughout the bulk. This underpins the phase-space origin of this resistance - as emerging from spatial gradients in the number of conduction modes. At elevated temperatures, by identifying and accounting for electron-phonon scattering, we reveal the details of the purely hydrodynamic flow. Strikingly, we find that electron hydrodynamics eliminates the bulk Landuer-Sharvin resistance. Finally, by imaging spiraling magneto-hydrodynamic Corbino flows, we reveal the key emergent length scale predicted by hydrodynamic theories - the Gurzhi length. These observations demonstrate that electronic fluids can dramatically transcend the fundamental limitations of ballistic electrons, with important implications for fundamental science and future technologies

13 citations

Journal ArticleDOI
TL;DR: A giant nonoscillatory magnetoresistance was found to arise beyond the range of low-field (Weiss) oscillations periodic in 1/B, which is in agreement with the semiclassical theory by Beenakker, if a modulation of the electron mobility is taken into account.
Abstract: We have extended earlier measurements of the magnetoresistance in a periodically modulated two-dimensional electron gas to high magnetic fields, where the cyclotron radius, r(c), is much smaller than the period, a, of modulation. A giant nonoscillatory magnetoresistance was found to arise beyond the range of low-field (Weiss) oscillations periodic in 1/B. Its value in a magnetic field of a few tesla may exceed the zero-field resistance value, rho-0, by 1 to 2 orders of magnitude. This result is in agreement with the semiclassical theory by Beenakker, if a modulation of the electron mobility is taken into account.

13 citations

Journal ArticleDOI
TL;DR: In this paper, the first thermopower measurements for a double quantum well sample were presented, and the phase transition at l"1 was shown to be hysteretic.
Abstract: We present the first thermopower measurements for a double quantum well sample. Magnetothermopower measurements provide further evidence for a finite temperature phase transition at l"1. An extraordinary, hysteretic feature in thermopower at l"2 is also reported. ( 1998 Elsevier Science B.V. All rights reserved.

12 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Abstract: Graphene is a rapidly rising star on the horizon of materials science and condensed-matter physics. This strictly two-dimensional material exhibits exceptionally high crystal and electronic quality, and, despite its short history, has already revealed a cornucopia of new physics and potential applications, which are briefly discussed here. Whereas one can be certain of the realness of applications only when commercial products appear, graphene no longer requires any further proof of its importance in terms of fundamental physics. Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena, some of which are unobservable in high-energy physics, can now be mimicked and tested in table-top experiments. More generally, graphene represents a conceptually new class of materials that are only one atom thick, and, on this basis, offers new inroads into low-dimensional physics that has never ceased to surprise and continues to provide a fertile ground for applications.

35,293 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: In this paper, the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations, are discussed.
Abstract: This article reviews the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations. The Dirac electrons can be controlled by application of external electric and magnetic fields, or by altering sample geometry and/or topology. The Dirac electrons behave in unusual ways in tunneling, confinement, and the integer quantum Hall effect. The electronic properties of graphene stacks are discussed and vary with stacking order and number of layers. Edge (surface) states in graphene depend on the edge termination (zigzag or armchair) and affect the physical properties of nanoribbons. Different types of disorder modify the Dirac equation leading to unusual spectroscopic and transport properties. The effects of electron-electron and electron-phonon interactions in single layer and multilayer graphene are also presented.

20,824 citations

Journal ArticleDOI
10 Nov 2005-Nature
TL;DR: This study reports an experimental study of a condensed-matter system (graphene, a single atomic layer of carbon) in which electron transport is essentially governed by Dirac's (relativistic) equation and reveals a variety of unusual phenomena that are characteristic of two-dimensional Dirac fermions.
Abstract: Quantum electrodynamics (resulting from the merger of quantum mechanics and relativity theory) has provided a clear understanding of phenomena ranging from particle physics to cosmology and from astrophysics to quantum chemistry. The ideas underlying quantum electrodynamics also influence the theory of condensed matter, but quantum relativistic effects are usually minute in the known experimental systems that can be described accurately by the non-relativistic Schrodinger equation. Here we report an experimental study of a condensed-matter system (graphene, a single atomic layer of carbon) in which electron transport is essentially governed by Dirac's (relativistic) equation. The charge carriers in graphene mimic relativistic particles with zero rest mass and have an effective 'speed of light' c* approximately 10(6) m s(-1). Our study reveals a variety of unusual phenomena that are characteristic of two-dimensional Dirac fermions. In particular we have observed the following: first, graphene's conductivity never falls below a minimum value corresponding to the quantum unit of conductance, even when concentrations of charge carriers tend to zero; second, the integer quantum Hall effect in graphene is anomalous in that it occurs at half-integer filling factors; and third, the cyclotron mass m(c) of massless carriers in graphene is described by E = m(c)c*2. This two-dimensional system is not only interesting in itself but also allows access to the subtle and rich physics of quantum electrodynamics in a bench-top experiment.

18,958 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations