scispace - formally typeset
Search or ask a question
Author

Andrea Adami

Bio: Andrea Adami is an academic researcher from Polytechnic University of Milan. The author has contributed to research in topics: Cultural heritage & Photogrammetry. The author has an hindex of 10, co-authored 38 publications receiving 358 citations. Previous affiliations of Andrea Adami include Instituto Politécnico Nacional & University of Verona.

Papers
More filters
Journal ArticleDOI
30 Jun 2015-Sensors
TL;DR: The main goal is to optimize the application of methodologies based on acquisition and automatic elaborations of photogrammetric data even with the use of Unmanned Aerial Vehicle systems in order to provide fast and low cost operations.
Abstract: This paper examines the survey of tall buildings in an emergency context like in the case of post-seismic events. The after-earthquake survey has to guarantee time-savings, high precision and security during the operational stages. The main goal is to optimize the application of methodologies based on acquisition and automatic elaborations of photogrammetric data even with the use of Unmanned Aerial Vehicle (UAV) systems in order to provide fast and low cost operations. The suggested methods integrate new technologies with commonly used technologies like TLS and topographic acquisition. The value of the photogrammetric application is demonstrated by a test case, based on the comparison of acquisition, calibration and 3D modeling results in case of use of a laser scanner, metric camera and amateur reflex camera. The test would help us to demonstrate the efficiency of image based methods in the acquisition of complex architecture. The case study is Santa Barbara Bell tower in Mantua. The applied survey solution allows a complete 3D database of the complex architectural structure to be obtained for the extraction of all the information needed for significant intervention. This demonstrates the applicability of the photogrammetry using UAV for the survey of vertical structures, complex buildings and difficult accessible architectural parts, providing high precision results.

132 citations

Journal ArticleDOI
TL;DR: Some communication rules and criteria that are often considered of minor importance by the researchers working in the field of digital cultural heritage but that are really essential to cultural transmission, especially inside museums are focused on.
Abstract: Starting from our experience in this domain, we discuss some fundamental concepts about the potentialities of the virtual reconstructions of cultural sites inside museums, with a specific focus on the communication needs, the design, the combination of media, the interaction interfaces, and the embodiment. We conceive a virtual reconstruction as a digital ecosystem, whose main peculiarities are (1) 3D reconstruction, (2) inclusivity, and (3) interactivity. A virtual reconstruction, in a wide sense, should integrate different levels of visualization, both realistic and symbolic; 3D models; metadata; storytelling; behaviors; and tools of visualization and interaction, in order to “reconstruct” and communicate a cultural context, an ecosystem where all the information is integrated. Despite the great advancements of the last years in the digitization process, computer graphics techniques, and archiving strategies, a basic limit of most of virtual museums is that they do not fire up the attention and the involvement of the public: they lack stimulating activities for visitors, narratives metaphors, and emotional impact. The interaction interfaces are not always simple to understand and to control in a few minutes, and they can generate a sense of frustration that causes users to abandon the application after a short and superficial approach. No gap should exist between knowledge and communication. But how can we translate the complexity of the knowledge in appealing to users and into simple applications that fit with the public's needq This article focuses on some communication rules and criteria that are often considered of minor importance by the researchers working in the field of digital cultural heritage but that are really essential to cultural transmission, especially inside museums. We believe that a stronger collaboration between research institutions and museums and among different disciplines would be recommended. Given this premise, we present the Etruscanning EU project, developed in 2011--2013, focused on the virtual reconstruction of two important Etruscan tombs of the Orientalizing period: the Regolini-Galassi tomb in Cerveteri and the tomb n.5 of Monte Michele in Veii.

52 citations

Journal ArticleDOI
TL;DR: Another possible approach is suggested that represents the first result of a research about the modelling of Cultural Heritage for BIM application that tries to combine the necessity of working with commercial software, in which it is difficult to be very accurate, and the information about the real object.
Abstract: . Modeling of Cultural Heritage in a BIM environment, and in general of existing buildings, requires special attention because there are two diametrically opposed possibilities. On the one hand the attempt is to realize a very complex and accurate model, in order to provide the most comprehensive representation of the architecture as possible. The opposite position leads to build a very schematic and symbolic model of as-built architecture. It is not easy to determine which is the right balance between these two attitudes because each architecture requires a personalized approach and not standards. It's, however, necessary to find rules to figure out which items are represented, what is the minimum level of detail to consider adequate and how to deal with alterations from simple and linear geometries. These two facing possibilities deal with different goals and tools. In the field of restoration or planned conservation, that is the most common approach for existing buildings, the attention focuses on the exceptions and particularities of each architecture: the important aspect is to understand and describe exactly each part as a singularity (as it is). In this context it is very difficult to find a standard or a common solution. The first possibility of modelling seems to be very close to this approach, but it clashes with two important aspects. A first problem concerns the modelling software. Usually commercial BIM modelling software doesn’t allow to realize very complex and high detailed solutions. They prefer working with predefined families and try to categorize each element in standard solution. The possibility to build new families is expected, but it often requires a lot of time. The second difficulty is the real efficiency of such an accurate model. In fact, it could be very difficult to link external elements to the model or use it in many traditional BIM applications. In this paper, we suggest another possible approach that represents the first result of a research about the modelling of Cultural Heritage for BIM application. The proposed solution aims to give as much information as possible about the architecture, and, at the same time, to guarantee a higher efficiency. In this case we considered commercial BIM software like Revit or Archicad. They are the most widespread and well-known software BIM oriented and they also allow the use of their embedded database structure. The core of our solution is to describe the architecture not only by a 3D model but also by the representation of the reliability of the accuracy of the model itself. In this way we try to combine the necessity of working with commercial software, in which it is difficult to be very accurate, and the information about the real object. In historical complex architecture, for example, it is very difficult to find a straight and planar wall. It is quite difficult, or at least time consuming, to model that kind of wall with high accuracy. But it is possible to represent the real wall by a schematic wall with a false color map which describes where the 3D model is well fitting and where there are some differences. In this way we don’t lose any information but, at the same time, we have a very usable BIM model.

34 citations

Proceedings ArticleDOI
01 Sep 2015
TL;DR: The goal of this research is more evident: the possibilities of using BIM modeling to the existing constructions and cultural heritage, as a support for the construction and management of a Plan for planned preventive maintenance.
Abstract: Modern digital technologies give us great possibilities to organize knowledge about constructions, regarding multidisciplinary fields like preservation, conservation and valorization of our architectural heritage, in order to suggest restoration projects and related work, or to suppose a planned preventive maintenance. New procedures to archive, analyze and manage architectural information find a natural support in 3D model, thanks to the development of capacities of new modeling software. Moreover, if the model contains or interfaces with a heterogeneous archive of information, as it is for BIM, this model can be considered as the bases of critical studies, projects of restoration, heritage maintenance, integrated management, protection, and valorization, and evaluation of economic aspects, management and planning, that can flow into a planned preventive maintenance [1]. The aspect that limit the use of BIM technology is the set up parametric object library inside programs: the standardized level of these objects deals difficulty with survey and restoration issues, where each single element has its own historical and architectural characterization [2]. From this foreword, the goal of this research is more evident: the possibilities of using BIM modeling to the existing constructions and cultural heritage, as a support for the construction and management of a Plan for planned preventive maintenance.

20 citations

Journal ArticleDOI
TL;DR: Two techniques for the digitization of the terracotta bust of Francesco II Gonzaga, in the City Museum of Mantua, are described: the triangulation scanner and dense image matching photogrammetry.
Abstract: . Geomatics technics and methods are now able to provide a great contribution to the Cultural Heritage (CH) processes, being adaptable to different purposes: management, diagnosis, restoration, protection, study and research, communication, formation and fruition of the Cultural Heritage. This experimentation was done with an eye to encouraging and promoting the development of principles and good practices for recording, documentation and information management of cultural heritage. This research focuses on the documentation path of a cultural asset, in particular a Renaissance statue, aimed to achieve a three dimensional model useful for many digital applications and for solid reproduction. The digital copy can be used in many contexts and represents an efficient tool to preserve and promote CH. It can be included in virtual museum archives and catalogues, shared on network with cultural operators and users, and it permits the contextualization of the asset in its artistic and historical background. Moreover, the possibility to obtain a hard copy, reproduced through 3D printing, allows to reach new opportunities of interaction with CH. In this article, two techniques for the digitization of the terracotta bust of Francesco II Gonzaga, in the City Museum of Mantua, are described: the triangulation scanner and dense image matching photogrammetry. As well as the description of the acquisition and the elaborations, other aspects are taken into account: the characteristics of the object, the place for the acquisition, the ultimate goal and the economic availability. There are also highlighted the optimization pipeline to get the correct three-dimensional models and a 3D printed copy. A separate section discusses the comparison of the realized model to identify the positive and negative aspects of each adopted application.

20 citations


Cited by
More filters
Journal ArticleDOI
05 May 2018
TL;DR: A review of the existing literature on H-BIM and its effective implementation in the cultural heritage sector, exploring the effectiveness and the usefulness of the different methodologies that were developed to model families of interest is presented in this article.
Abstract: Many projects concerning the protection, conservation, restoration, and dissemination of cultural heritage are being carried out around the world due to its growing interest as a driving force of socio-economic development. The existence of reliable, digital three-dimensional (3D) models that allow for the planning and management of these projects in a remote and decentralized way is currently a growing necessity. There are many software tools to perform the modeling and complete three-dimensional documentation of the intervened monuments. However, the Architecture, Engineering and Construction (AEC) sector has adopted the Building Information Modeling (BIM) standard over the last few decades due to the progress that has been made in its qualities and capabilities. The complex modeling of cultural heritage through commercial BIM software leads to the consideration of the concept of Heritage BIM (H-BIM), which pursues the modeling of architectural elements, according to artistic, historical, and constructive typologies. In addition, H-BIM is considered to be an emerging technology that enables us to understand, document, advertize, and virtually reconstruct the built heritage. This article is a review of the existing literature on H-BIM and its effective implementation in the cultural heritage sector, exploring the effectiveness and the usefulness of the different methodologies that were developed to model families of elements of interest.

209 citations

Book
01 Jan 2012

160 citations

Journal ArticleDOI
TL;DR: This paper aims at drawing attention to the actual technologies in use for solid printing (digital fabrication) used for the realization of material copies, therefore tangible, of three-dimensional digital virtual models.

153 citations

Journal ArticleDOI
TL;DR: In this article, the advantages of airborne and spaceborne remote sensing (ASRS), the principles that make passive (photography, multispectral and hyperspectral) and active (synthetic aperture radar (SAR) and light detection and ranging radar (LiDAR)) imaging techniques suitable for ACH applications are summarized and pointed out; a review of ASRS and the methodologies used over the past century is then presented together with relevant highlights from well-known research projects.

151 citations

Journal ArticleDOI
TL;DR: A metrological geometric verification of Kinect and Xtion sensors is performed using a standard artifact which consists of five delrin spheres and seven aluminum cubes to confirm that these sensors can be used in many engineering applications when the measurement range is short and accuracy requirements are not very strict.

147 citations