scispace - formally typeset
Search or ask a question
Author

Andrea Bevilacqua

Other affiliations: Infineon Technologies
Bio: Andrea Bevilacqua is an academic researcher from University of Padua. The author has contributed to research in topics: CMOS & Phase noise. The author has an hindex of 23, co-authored 111 publications receiving 2604 citations. Previous affiliations of Andrea Bevilacqua include Infineon Technologies.


Papers
More filters
Journal ArticleDOI
TL;DR: An ultrawideband 3.1-10.6-GHz low-noise amplifier employing an input three-section band-pass Chebyshev filter using a 0.18-/spl mu/m CMOS process achieves a power gain of 9.3 dB with an input match of -10 dB over the band.
Abstract: An ultrawideband 3.1-10.6-GHz low-noise amplifier employing an input three-section band-pass Chebyshev filter is presented. Fabricated in a 0.18-/spl mu/m CMOS process, the IC prototype achieves a power gain of 9.3 dB with an input match of -10 dB over the band, a minimum noise figure of 4 dB, and an IIP3 of -6.7 dBm while consuming 9 mW.

714 citations

Proceedings ArticleDOI
13 Sep 2004
TL;DR: A UWB 3.1 to 10.6 GHz LNA employing an input three-section band-pass Chebyshev filter is reported, which achieves a power gain of 9.3 dB with an input match of 9 mW.
Abstract: A UWB 3.1 to 10.6 GHz LNA employing an input three-section band-pass Chebyshev filter is reported. Fabricated in a 0.18 /spl mu/m CMOS process, -10 dB over the band, a NF of 4 dB, and an IIP3 of -6.7 dBm while consuming the IC achieves a power gain of 9.3 dB with an input match of 9 mW.

276 citations

Journal ArticleDOI
TL;DR: A transformer-based resonator is proposed to be used to build a dual-mode oscillator, e.g., a system capable of oscillating at two different frequencies without recurring to switched inductors, switched capacitors, or varactors.
Abstract: In this brief, we propose to use a transformer-based resonator to build a dual-mode oscillator, e.g., a system capable of oscillating at two different frequencies without recurring to switched inductors, switched capacitors, or varactors. The behavior of the resonator configured as a one-port and a two-port network is studied analytically, and the dependence of the quality factor on the design parameters is thoroughly explored. These results, combined with the use of traditional frequency tuning techniques, are applied to the design of a wide-band voltage-controlled oscillator (VCO) that covers the frequency range 3.6-7.8 GHz. The performance of the designed VCO, implemented in a digital 0.13-mum CMOS technology, has been studied by transistor-level and 2.5D electromagnetic simulation (Agilent Momentum). A typical phase noise performance at 1-MHz offset of -104 dBc/Hz has been predicted, while the power consumption ranges from 1 to 8 mW, depending on the VCO configuration

135 citations

Journal ArticleDOI
TL;DR: In this paper, a system design of an integrated microwave imaging radar for the diagnostic screening of breast cancer is presented. But the system design is based on a custom integrated circuit implemented in a 65nm CMOS technology and a pair of patch antennas realized on a planar laminate.
Abstract: The system design of an integrated microwave imaging radar for the diagnostic screening of breasts cancer is presented. A custom integrated circuit implemented in a 65-nm CMOS technology and a pair of patch antennas realized on a planar laminate are proposed as the basic module of the imaging antenna array. The radar operates on the broad frequency range from 2 to 16 GHz with a dynamic range of 107 dB. Imaging experiments carried out on a realistic breast phantom show that the system is capable of detecting tumor targets with a resolution of 3 mm.

105 citations

Journal ArticleDOI
TL;DR: A 0.13-mu m CMOS fourth-order notch filter for the rejection of the 5-6 GHz interference in UWB front-ends is reported and an algorithm for the automatic tuning and calibration of the filter is discussed and demonstrated.
Abstract: A 0.13-mu m CMOS fourth-order notch filter for the rejection of the 5-6 GHz interference in UWB front-ends is reported. The filter is integrated into an analog front-end for Mode #1 UWB. A thorough analysis based on a simplified model of the filter is carried out. An algorithm for the automatic tuning and calibration of the filter is also discussed and demonstrated. Two versions of the circuit are designed and fabricated: the first comprises a low-noise amplifier and the filter, and the second expands it to a complete front-end. In the latter version the filter was also redesigned. The filter provides more than 35 dB of attenuation and has a tuning range of 900 MHz, adding less than 30% power consumption to the LNA. The out-of-band IIP3 (higher than -13.2 dBm with the filter off) takes a 9-dB advantage from the filter and the compression of the gain due to the out-of-band blocker is reduced by at least 6 dB in the complete front-end. The conversion gain of the front-end is 25 dB per channel, its average noise figure is lower than 6.2 dB, and its in-band 1-dB compression point is higher than - 30 dBm at a power consumption of 32 mW.

97 citations


Cited by
More filters
Journal Article

510 citations

Journal ArticleDOI
TL;DR: The analysis of phase noise is extended to encompass a general harmonic oscillator, showing that all phase noise relations previously obtained for specific LC oscillator topologies are special cases of a very general and remarkably simple result.
Abstract: A harmonic oscillator topology displaying an improved phase noise performance is introduced in this paper. Exploiting the advantages yielded by operating the core transistors in class-C, a theoretical 3.9 dB phase noise improvement compared to the standard differential-pair LC-tank oscillator is achieved for the same current consumption. Further benefits derive from the natural rejection of the tail bias current noise, and from the absence of parasitic nodes sensitive to stray capacitances. Closed-form phase-noise equations obtained from a rigorous time-variant circuit analysis are presented, as well as a time-variant study of the stability of the oscillation amplitude, resulting in simple guidelines for a reliable design. Furthermore, the analysis of phase noise is extended to encompass a general harmonic oscillator, showing that all phase noise relations previously obtained for specific LC oscillator topologies are special cases of a very general and remarkably simple result.

438 citations

Journal ArticleDOI
TL;DR: In this paper, an ultra wideband (UWB) CMOS low noise amplifier (LNA) topology that combines a narrowband LNA with a resistive shunt-feedback is proposed.
Abstract: An ultra-wideband (UWB) CMOS low noise amplifier (LNA) topology that combines a narrowband LNA with a resistive shunt-feedback is proposed. The resistive shunt-feedback provides wideband input matching with small noise figure (NF) degradation by reducing the Q-factor of the narrowband LNA input and flattens the passband gain. The proposed UWB amplifier is implemented in 0.18-/spl mu/m CMOS technology for a 3.1-5-GHz UWB system. Measurements show a -3-dB gain bandwidth of 2-4.6GHz, a minimum NF of 2.3 dB, a power gain of 9.8 dB, better than -9 dB of input matching, and an input IP3 of -7dBm, while consuming only 12.6 mW of power.

424 citations

Journal ArticleDOI
TL;DR: An ultra-wideband 3.1-10.6-GHz low-noise amplifier employing a broadband noise-canceling technique is presented, which achieves a power gain of 9.7 dB over a -3 dB bandwidth of 1.2-11.9-GHz and a noise figure of 4.5-5.1 dB in the entire UWB band.
Abstract: An ultra-wideband 3.1-10.6-GHz low-noise amplifier employing a broadband noise-canceling technique is presented. By using the proposed circuit and design methodology, the noise from the matching device is greatly suppressed over the desired UWB band, while the noise from other devices performing noise cancellation is minimized by the systematic approach. Fabricated in a 0.18-mum CMOS process, the IC prototype achieves a power gain of 9.7 dB over a -3 dB bandwidth of 1.2-11.9-GHz and a noise figure of 4.5-5.1 dB in the entire UWB band. It consumes 20 mW from a 1.8-V supply and occupies an area of only 0.59 mm2

392 citations

Journal ArticleDOI
03 Jun 2007
TL;DR: A broadband inductorless low-noise amplifier (LNA) design that utilizes simultaneous noise and distortion cancellation is presented and is demonstrated to have a minimum internal gain of 14.5 dB.
Abstract: A broadband inductorless low-noise amplifier (LNA) design that utilizes simultaneous noise and distortion cancellation is presented. Concurrent cancellation of the intrinsic third-order distortion from individual stages is exhibited with the common-gate and common-source cascade. The LNA is then limited by the second-order interaction between the common source and common gate stages, which is common in all cascade amplifiers. Further removal of this third-order distortion is achieved by incorporating a second-order-distortion-free circuit technique in the common gate stage. Implemented in 0.13 m CMOS technology, this LNA achieved 16 dBm in both the 900 MHz and 2 GHz bands. Measurements demonstrate that the LNA has a minimum internal gain of 14.5 dB, noise figure of 2.6 dB from 800 MHz to 2.1GHz while drawing 11.6 mA from 1.5 V supply voltage.

363 citations