scispace - formally typeset
Search or ask a question
Author

Andrea Cavagna

Bio: Andrea Cavagna is an academic researcher from Sapienza University of Rome. The author has contributed to research in topics: Flocking (behavior) & Spin glass. The author has an hindex of 42, co-authored 138 publications receiving 9064 citations. Previous affiliations of Andrea Cavagna include National Research Council & The Graduate Center, CUNY.


Papers
More filters
Journal ArticleDOI
TL;DR: It is argued that a topological interaction is indispensable to maintain a flock's cohesion against the large density changes caused by external perturbations, typically predation, and supported by numerical simulations.
Abstract: Numerical models indicate that collective animal behavior may emerge from simple local rules of interaction among the individuals. However, very little is known about the nature of such interaction, so that models and theories mostly rely on aprioristic assumptions. By reconstructing the three-dimensional positions of individual birds in airborne flocks of a few thousand members, we show that the interaction does not depend on the metric distance, as most current models and theories assume, but rather on the topological distance. In fact, we discovered that each bird interacts on average with a fixed number of neighbors (six to seven), rather than with all neighbors within a fixed metric distance. We argue that a topological interaction is indispensable to maintain a flock's cohesion against the large density changes caused by external perturbations, typically predation. We support this hypothesis by numerical simulations, showing that a topological interaction grants significantly higher cohesion of the aggregation compared with a standard metric one.

1,814 citations

Journal ArticleDOI
TL;DR: It is suggested that flocks behave as critical systems, poised to respond maximally to environmental perturbations, through scale-free behavioral correlations, which provide each animal with an effective perception range much larger than the direct interindividual interaction range, thus enhancing global response to perturbation.
Abstract: From bird flocks to fish schools, animal groups often seem to react to environmental perturbations as if of one mind. Most studies in collective animal behavior have aimed to understand how a globally ordered state may emerge from simple behavioral rules. Less effort has been devoted to understanding the origin of collective response, namely the way the group as a whole reacts to its environment. Yet, in the presence of strong predatory pressure on the group, collective response may yield a significant adaptive advantage. Here we suggest that collective response in animal groups may be achieved through scale-free behavioral correlations. By reconstructing the 3D position and velocity of individual birds in large flocks of starlings, we measured to what extent the velocity fluctuations of different birds are correlated to each other. We found that the range of such spatial correlation does not have a constant value, but it scales with the linear size of the flock. This result indicates that behavioral correlations are scale free: The change in the behavioral state of one animal affects and is affected by that of all other animals in the group, no matter how large the group is. Scale-free correlations provide each animal with an effective perception range much larger than the direct interindividual interaction range, thus enhancing global response to perturbations. Our results suggest that flocks behave as critical systems, poised to respond maximally to environmental perturbations.

867 citations

Journal ArticleDOI
TL;DR: It is shown how a quantitative microscopic theory for directional ordering in a flock can be derived directly from field data, and the minimally structured (maximum entropy) model is constructed consistent with experimental correlations in large flocks of starlings.
Abstract: Flocking is a typical example of emergent collective behavior, where interactions between individuals produce collective patterns on the large scale. Here we show how a quantitative microscopic theory for directional ordering in a flock can be derived directly from field data. We construct the minimally structured (maximum entropy) model consistent with experimental correlations in large flocks of starlings. The maximum entropy model shows that local, pairwise interactions between birds are sufficient to correctly predict the propagation of order throughout entire flocks of starlings, with no free parameters. We also find that the number of interacting neighbors is independent of flock density, confirming that interactions are ruled by topological rather than metric distance. Finally, by comparing flocks of different sizes, the model correctly accounts for the observed scale invariance of long-range correlations among the fluctuations in flight direction.

647 citations

Journal ArticleDOI
TL;DR: In this paper, the main phenomenological traits of supercooled liquids are discussed and a few theoretical ideas on the subject are discussed in a very partial way, and the correlation length associated to the sharp increase of the relaxation time is discussed.

593 citations

Journal ArticleDOI
TL;DR: In this article, the main phenomenological traits of supercooled liquids are discussed and a few theoretical ideas on the subject are discussed in a very partial way, and the correlation length associated to the sharp increase of the relaxation time is discussed.
Abstract: When we lower the temperature of a liquid, at some point we meet a first order phase transition to the crystal. Yet, under certain conditions it is possible to keep the system in its metastable phase and to avoid crystallization. In this way the liquid enters in the supercooled phase. Supercooled liquids have a very rich phenomenology, which is still far from being completely understood. To begin with, there is the problem of how to prevent crystallization and how deeply the liquid can be supercooled before a metastability limit is hit. But by far the most interesting feature of supercooled liquids is the dynamic glass transition: when the temperature is decreased below a certain point, the relaxation time increases so much that a dramatic dynamical arrest intervenes and we are unable to equilibrate the system within reasonable experimental times. The glass transition is a phenomenon whose physical origin has stirred an enormous interest in the last hundred years. Why does it occur? Is it just a conventional reference point, or does it have a more profound physical meaning? Is it a purely dynamical event, or the manifestation of a true thermodynamic transition? What is the correlation length associated to the sharp increase of the relaxation time? Can we define a new kind of amorphous order? A shared theory of supercooled liquids and the glass transition does not yet exist and these questions are still largely open. Here, I will illustrate in the most elementary fashion the main phenomenological traits of supercooled liquids and discuss in a very partial way a few theoretical ideas on the subject.

563 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 Jan 2004
TL;DR: Comprehensive and up-to-date, this book includes essential topics that either reflect practical significance or are of theoretical importance and describes numerous important application areas such as image based rendering and digital libraries.
Abstract: From the Publisher: The accessible presentation of this book gives both a general view of the entire computer vision enterprise and also offers sufficient detail to be able to build useful applications. Users learn techniques that have proven to be useful by first-hand experience and a wide range of mathematical methods. A CD-ROM with every copy of the text contains source code for programming practice, color images, and illustrative movies. Comprehensive and up-to-date, this book includes essential topics that either reflect practical significance or are of theoretical importance. Topics are discussed in substantial and increasing depth. Application surveys describe numerous important application areas such as image based rendering and digital libraries. Many important algorithms broken down and illustrated in pseudo code. Appropriate for use by engineers as a comprehensive reference to the computer vision enterprise.

3,627 citations

Journal ArticleDOI
TL;DR: This review summarizes theoretical progress in the field of active matter, placing it in the context of recent experiments, and highlights the experimental relevance of various semimicroscopic derivations of the continuum theory for describing bacterial swarms and suspensions, the cytoskeleton of living cells, and vibrated granular material.
Abstract: This review summarizes theoretical progress in the field of active matter, placing it in the context of recent experiments. This approach offers a unified framework for the mechanical and statistical properties of living matter: biofilaments and molecular motors in vitro or in vivo, collections of motile microorganisms, animal flocks, and chemical or mechanical imitations. A major goal of this review is to integrate several approaches proposed in the literature, from semimicroscopic to phenomenological. In particular, first considered are ``dry'' systems, defined as those where momentum is not conserved due to friction with a substrate or an embedding porous medium. The differences and similarities between two types of orientationally ordered states, the nematic and the polar, are clarified. Next, the active hydrodynamics of suspensions or ``wet'' systems is discussed and the relation with and difference from the dry case, as well as various large-scale instabilities of these nonequilibrium states of matter, are highlighted. Further highlighted are various large-scale instabilities of these nonequilibrium states of matter. Various semimicroscopic derivations of the continuum theory are discussed and connected, highlighting the unifying and generic nature of the continuum model. Throughout the review, the experimental relevance of these theories for describing bacterial swarms and suspensions, the cytoskeleton of living cells, and vibrated granular material is discussed. Promising extensions toward greater realism in specific contexts from cell biology to animal behavior are suggested, and remarks are given on some exotic active-matter analogs. Last, the outlook for a quantitative understanding of active matter, through the interplay of detailed theory with controlled experiments on simplified systems, with living or artificial constituents, is summarized.

3,314 citations

Journal ArticleDOI
TL;DR: In this paper, the current status of area laws in quantum many-body systems is reviewed and a significant proportion is devoted to the clear and quantitative connection between the entanglement content of states and the possibility of their efficient numerical simulation.
Abstract: Physical interactions in quantum many-body systems are typically local: Individual constituents interact mainly with their few nearest neighbors. This locality of interactions is inherited by a decay of correlation functions, but also reflected by scaling laws of a quite profound quantity: the entanglement entropy of ground states. This entropy of the reduced state of a subregion often merely grows like the boundary area of the subregion, and not like its volume, in sharp contrast with an expected extensive behavior. Such ``area laws'' for the entanglement entropy and related quantities have received considerable attention in recent years. They emerge in several seemingly unrelated fields, in the context of black hole physics, quantum information science, and quantum many-body physics where they have important implications on the numerical simulation of lattice models. In this Colloquium the current status of area laws in these fields is reviewed. Center stage is taken by rigorous results on lattice models in one and higher spatial dimensions. The differences and similarities between bosonic and fermionic models are stressed, area laws are related to the velocity of information propagation in quantum lattice models, and disordered systems, nonequilibrium situations, and topological entanglement entropies are discussed. These questions are considered in classical and quantum systems, in their ground and thermal states, for a variety of correlation measures. A significant proportion is devoted to the clear and quantitative connection between the entanglement content of states and the possibility of their efficient numerical simulation. Matrix-product states, higher-dimensional analogs, and variational sets from entanglement renormalization are also discussed and the paper is concluded by highlighting the implications of area laws on quantifying the effective degrees of freedom that need to be considered in simulations of quantum states.

2,282 citations

Journal ArticleDOI
TL;DR: A conceptual framework depicting the interplay among four basic mechanistic components of organismal movement is introduced, providing a basis for hypothesis generation and a vehicle facilitating the understanding of the causes, mechanisms, and spatiotemporal patterns of movement and their role in various ecological and evolutionary processes.
Abstract: Movement of individual organisms is fundamental to life, quilting our planet in a rich tapestry of phenomena with diverse implications for ecosystems and humans. Movement research is both plentiful and insightful, and recent methodological advances facilitate obtaining a detailed view of individual movement. Yet, we lack a general unifying paradigm, derived from first principles, which can place movement studies within a common context and advance the development of a mature scientific discipline. This introductory article to the Movement Ecology Special Feature proposes a paradigm that integrates conceptual, theoretical, methodological, and empirical frameworks for studying movement of all organisms, from microbes to trees to elephants. We introduce a conceptual framework depicting the interplay among four basic mechanistic components of organismal movement: the internal state (why move?), motion (how to move?), and navigation (when and where to move?) capacities of the individual and the external factors affecting movement. We demonstrate how the proposed framework aids the study of various taxa and movement types; promotes the formulation of hypotheses about movement; and complements existing biomechanical, cognitive, random, and optimality paradigms of movement. The proposed framework integrates eclectic research on movement into a structured paradigm and aims at providing a basis for hypothesis generation and a vehicle facilitating the understanding of the causes, mechanisms, and spatiotemporal patterns of movement and their role in various ecological and evolutionary processes. "Now we must consider in general the common reason for moving with any movement whatever." (Aristotle, De Motu Animalium, 4th century B.C.).

2,133 citations