scispace - formally typeset
Search or ask a question
Author

Andrea D. Caviglia

Other affiliations: Max Planck Society, University of Geneva, University of Hamburg  ...read more
Bio: Andrea D. Caviglia is an academic researcher from Delft University of Technology. The author has contributed to research in topics: Superconductivity & Phase transition. The author has an hindex of 33, co-authored 96 publications receiving 6158 citations. Previous affiliations of Andrea D. Caviglia include Max Planck Society & University of Geneva.


Papers
More filters
Journal ArticleDOI
31 Aug 2007-Science
TL;DR: This work reports on superconductivity in the electron gas formed at the interface between two insulating dielectric perovskite oxides, LaAlO3 and SrTiO3.
Abstract: At interfaces between complex oxides, electronic systems with unusual electronic properties can be generated. We report on superconductivity in the electron gas formed at the interface between two insulating dielectric perovskite oxides, LaAlO3 and SrTiO3. The behavior of the electron gas is that of a two-dimensional superconductor, confined to a thin sheet at the interface. The superconducting transition temperature of ≅ 200 millikelvin provides a strict upper limit to the thickness of the superconducting layer of ≅ 10 nanometers.

2,317 citations

Journal ArticleDOI
04 Dec 2008-Nature
TL;DR: The electrostatic tuning of the carrier density allows an on/off switching of superconductivity and drives a quantum phase transition between a two-dimensional superconducting state and an insulating state, which opens the way to the development of new mesoscopicsuperconducting circuits.
Abstract: Interfaces between complex oxides are emerging as one of the most interesting systems in condensed matter physics. In this special setting, in which translational symmetry is artificially broken, a variety of new and unusual electronic phases can be promoted. Theoretical studies predict complex phase diagrams and suggest the key role of the charge carrier density in determining the systems' ground states. A particularly fascinating system is the conducting interface between the band insulators LaAlO(3) and SrTiO(3) (ref. 3). Recently two possible ground states have been experimentally identified: a magnetic state and a two-dimensional superconducting condensate. Here we use the electric field effect to explore the phase diagram of the system. The electrostatic tuning of the carrier density allows an on/off switching of superconductivity and drives a quantum phase transition between a two-dimensional superconducting state and an insulating state. Analyses of the magnetotransport properties in the insulating state are consistent with weak localization and do not provide evidence for magnetism. The electric field control of superconductivity demonstrated here opens the way to the development of new mesoscopic superconducting circuits.

1,063 citations

Journal ArticleDOI
TL;DR: A new example of an electronic property arising from the interfacial breaking of inversion symmetry, namely, a large Rashba spin-orbit interaction, whose magnitude can be modulated by the application of an external electric field is laid out.
Abstract: The quasi-two-dimensional electron gas found at the ${\mathrm{LaAlO}}_{3}/{\mathrm{SrTiO}}_{3}$ interface offers exciting new functionalities, such as tunable superconductivity, and has been proposed as a new nanoelectronics fabrication platform. Here we lay out a new example of an electronic property arising from the interfacial breaking of inversion symmetry, namely, a large Rashba spin-orbit interaction, whose magnitude can be modulated by the application of an external electric field. By means of magnetotransport experiments we explore the evolution of the spin-orbit coupling across the phase diagram of the system. We uncover a steep rise in Rashba interaction occurring around the doping level where a quantum critical point separates the insulating and superconducting ground states of the system.

787 citations

Journal ArticleDOI
TL;DR: This observation directly indicates the formation of a two-dimensional electron gas originating from quantum confinement at the interface of LaAlO3 /SrTiO3 interfaces characterized by mobilities of the order of several thousands cm2/V s.
Abstract: We report on a study of magnetotransport in ${\mathrm{LaAlO}}_{3}/{\mathrm{SrTiO}}_{3}$ interfaces characterized by mobilities of the order of several thousands ${\mathrm{cm}}^{2}/\mathrm{V}\text{ }\mathrm{s}$. We observe Shubnikov--de Haas oscillations whose period depends only on the perpendicular component of the magnetic field. This observation directly indicates the formation of a two-dimensional electron gas originating from quantum confinement at the interface. From the temperature dependence of the oscillation amplitude we extract an effective carrier mass ${m}^{*}\ensuremath{\simeq}1.45{m}_{e}$. An electric field applied in the back-gate geometry increases the mobility, the carrier density, and the oscillation frequency.

226 citations

Journal ArticleDOI
TL;DR: Vibrational excitation, extended here to a wide class of heterostructures and interfaces, may be conducive to new strategies for electronic phase control at THz repetition rates.
Abstract: We report on ultrafast optical experiments in which femtosecond midinfrared radiation is used to excite the lattice of complex oxide heterostructures. By tuning the excitation energy to a vibrational mode of the substrate, a long-lived five-order-of-magnitude increase of the electrical conductivity of NdNiO(3) epitaxial thin films is observed as a structural distortion propagates across the interface. Vibrational excitation, extended here to a wide class of heterostructures and interfaces, may be conducive to new strategies for electronic phase control at THz repetition rates.

139 citations


Cited by
More filters
Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
05 Mar 2018-Nature
TL;DR: The realization of intrinsic unconventional superconductivity is reported—which cannot be explained by weak electron–phonon interactions—in a two-dimensional superlattice created by stacking two sheets of graphene that are twisted relative to each other by a small angle.
Abstract: The behaviour of strongly correlated materials, and in particular unconventional superconductors, has been studied extensively for decades, but is still not well understood. This lack of theoretical understanding has motivated the development of experimental techniques for studying such behaviour, such as using ultracold atom lattices to simulate quantum materials. Here we report the realization of intrinsic unconventional superconductivity-which cannot be explained by weak electron-phonon interactions-in a two-dimensional superlattice created by stacking two sheets of graphene that are twisted relative to each other by a small angle. For twist angles of about 1.1°-the first 'magic' angle-the electronic band structure of this 'twisted bilayer graphene' exhibits flat bands near zero Fermi energy, resulting in correlated insulating states at half-filling. Upon electrostatic doping of the material away from these correlated insulating states, we observe tunable zero-resistance states with a critical temperature of up to 1.7 kelvin. The temperature-carrier-density phase diagram of twisted bilayer graphene is similar to that of copper oxides (or cuprates), and includes dome-shaped regions that correspond to superconductivity. Moreover, quantum oscillations in the longitudinal resistance of the material indicate the presence of small Fermi surfaces near the correlated insulating states, in analogy with underdoped cuprates. The relatively high superconducting critical temperature of twisted bilayer graphene, given such a small Fermi surface (which corresponds to a carrier density of about 1011 per square centimetre), puts it among the superconductors with the strongest pairing strength between electrons. Twisted bilayer graphene is a precisely tunable, purely carbon-based, two-dimensional superconductor. It is therefore an ideal material for investigations of strongly correlated phenomena, which could lead to insights into the physics of high-critical-temperature superconductors and quantum spin liquids.

5,613 citations

Journal ArticleDOI
TL;DR: Recent technical advances in the atomic-scale synthesis of oxide heterostructures have provided a fertile new ground for creating novel states at their interfaces, with characteristic feature is the reconstruction of the charge, spin and orbital states at interfaces on the nanometre scale.
Abstract: Recent technical advances in the atomic-scale synthesis of oxide heterostructures have provided a fertile new ground for creating novel states at their interfaces. Different symmetry constraints can be used to design structures exhibiting phenomena not found in the bulk constituents. A characteristic feature is the reconstruction of the charge, spin and orbital states at interfaces on the nanometre scale. Examples such as interface superconductivity, magneto-electric coupling, and the quantum Hall effect in oxide heterostructures are representative of the scientific and technological opportunities in this rapidly emerging field.

2,037 citations