scispace - formally typeset
Search or ask a question
Author

Andrea Di Muro

Bio: Andrea Di Muro is an academic researcher from Paris Diderot University. The author has contributed to research in topics: Lava & Volcano. The author has an hindex of 11, co-authored 23 publications receiving 600 citations. Previous affiliations of Andrea Di Muro include Pierre-and-Marie-Curie University & Centre national de la recherche scientifique.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, an extensive dataset on major elements and volatiles (CO2, H2O, S and Cl) in olivine-hosted melt inclusions and embayments from pyroclasts emplaced during explosive eruptions of variable magnitude is presented.
Abstract: Stromboli is known for its persistent degassing and rhythmic strombolian activity occasionally punctuated by paroxysmal eruptions. The basaltic pumice and scoria emitted during paroxysms and strombolian activity, respectively, differ in their textures, crystal contents and glass matrix compositions, which testify to distinct conditions of crystallization, degassing and magma ascent. We present here an extensive dataset on major elements and volatiles (CO2, H2O, S and Cl) in olivine-hosted melt inclusions and embayments from pyroclasts emplaced during explosive eruptions of variable magnitude. Magma saturation pressures were assessed from the dissolved amounts of H2 Oa nd CO2 taking into account the melt composition evolution. Both pressures and melt inclusion compositions indicate that (1) Ca-basaltic melts entrapped in high-Mg olivines (Fo89^90) generate Stromboli basalts through crystal fractionation, and (2) the Stromboli plumbing system can be imaged as a succession of magma ponding zones connected by dikes. The 7^10 km interval, where magmas are stored and differentiate, is periodically recharged by new magma batches, possibly ranging from Ca-basalts to basalts, with a CO2-rich gas phase.These deep recharges promote the formation of bubbly basalt blobs, which are able to intrude the shallow plumbing system (2^4 km), where CO2 gas fluxing enhances H2O loss, crystallization and generation of crystal-rich, dense, degassed magma. Chlorine partitioning into the H2O^CO2-bearing gas phase accounts for its efficient degassing (� 69%) under the open-system conditions of strombolian activity. Paroxysms, however, are generated through predominantly closed-system ascent of basaltic magma batches from the deep storage zone. In this situation crystallization is negligible and sulfur exsolution starts at � 170 MPa. Chlorine remains dissolved in the melt until lower pressures, only 16% being lost upon eruption. Finally, we propose a continuum in explosive eruption energy, from strombolian activity to large paroxysmal events, ultimately controlled by variable pressurization of the deep feeding system associated with magma and gas recharges.

206 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provided the first exhaustive compilation of all volcanic events (intrusions, eruptions, seismic crises) and related parameters at Piton de la Fournaise in the 1985-2010 period.

105 citations

Journal ArticleDOI
TL;DR: In this paper, a database of porosity and connectivity measurements for 35 volcanoes and 535 volcanic rock samples was compiled and the percolation threshold is used to understand the onset of pore connectivity in shallow magmas.

85 citations

Journal ArticleDOI
TL;DR: In this article, the authors used a 19-year-long database of volcano-tectonic seismic events together with detailed mapping of the cinder cones and eruptive fissures to determine the geometry and the dynamics of the magma paths intersecting the edifice of Piton de la Fournaise volcano.

56 citations

Journal ArticleDOI
TL;DR: In this paper, the spatial and temporal dispersal of pyroclasts during the initial 15 min of collapsing and transitional columns was investigated by using a transient, two-dimensional and three-phase flow model.

53 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors studied the H2O contents of the least degassed melt inclusions from each volcano and found that the mean and common average values for H2Os are within one s.d.

400 citations

Journal ArticleDOI
TL;DR: In this article, the authors review and integrate models of the primary conduit processes to show when each process or property dominates and how these interact within a conduit, and illustrate how and why ascent rate may control eruptive behavior.
Abstract: The style and evolution of volcanic eruptions are dictated by the fluid mechanics governing magma ascent. Decompression during ascent causes dissolved volatile species, such as water and carbon dioxide, to exsolve from the melt to form bubbles, thus providing a driving force for the eruption. Ascent is influenced not only by the nucleation and growth of gas bubbles, but also magma rheology and brittle deformation (fragmentation). In fact, all processes and magma properties within the conduit interact and are coupled. Ultimately, it is the ability of gas trapped within growing bubbles to expand or to be lost by permeable gas flow, which determines whether ascending magmas can erupt nonexplosively. We review and integrate models of the primary conduit processes to show when each process or property dominates and how these interact within a conduit. In particular, we illustrate how and why ascent rate may control eruptive behavior: slowly ascending magmas erupt effusively and rapidly ascending magmas erupt explosively.

351 citations

Journal ArticleDOI
TL;DR: In this paper, a review of numerical models on dike propagation focusing on the most recent studies is presented, which track the influence of two main philosophies, one in which fluid dynamics is taken to control the behavior and the other which focuses on rock fracturing.

284 citations

Journal ArticleDOI
TL;DR: The major magmatic volatile components (H2O, CO2, S, Cl, and F) play an important role in the formation, evolution, and eruption of magma as mentioned in this paper.
Abstract: The major magmatic volatile components—H2O, CO2, S, Cl, and F— play an important role in the formation, evolution, and eruption of magma. Knowledge of magmatic concentrations and fluxes of these volatiles is thus important for understanding explosive eruptive behavior of volcanoes, recycling of volatiles in subduction zones, formation of magmatic-hydrothermal ore deposits, fluxes of volcanic gases to Earth’s atmosphere, and potential climatic impacts of large volcanic eruptions. Over the past 30 years, new analytical techniques for measuring volatiles in melt inclusions and glasses from volcanic rocks and new developments in remote sensing technology used for quantifying volcanic emissions have led to major advances in our understanding of volatiles in magmatic systems and their fluxes from Earth’s mantle to the crust and hydrosphere. Sulfur plays a particularly important role in many of the processes noted above because it affects partitioning of metals into sulfide phases or vapor in magmas during crustal storage, and when released to the atmosphere, it forms sulfuric acid aerosol droplets that catalyze ozone destruction, influences other aspects of atmospheric chemistry, and blocks incoming solar radiation. In addition, S may play a role in causing oxidation of the mantle wedge above subduction zones (Kelley and Cottrell 2009). In silicate melts, the solubility behavior, activity-composition relations, and vapor-melt partitioning of S are complex due to multiple valence states and species (S2−, S6+ in melt; H2S, S2, SO2, SO3 in vapor) and the occurrence of non-volatile S-rich phases (immiscible Fe-S-O liquid, pyrrhotite, monosulfide and intermediate solid solutions, anhydrite). Sulfur dioxide (SO2) is the easiest of the main magmatic volatiles to measure in volcanic plumes using ground- and satellite-based remote sensing techniques because of its relatively high concentration in volcanic plumes relative to background values. More …

237 citations

Journal ArticleDOI
TL;DR: This review evaluates the competing processes that lead to explosive and effusive eruptions of silicic magmas and examines the underlying controls on eruptive styles such as magma viscosity, degassing and conduit geometry at volcanoes withsilicic compositions.
Abstract: One of the biggest challenges in volcanic hazard assessment is to understand how and why eruptive style changes within the same eruptive period or even from one eruption to the next at a given volcano. This review evaluates the competing processes that lead to explosive and effusive eruptions of silicic magmas. Eruptive style depends on a set of feedback involving interrelated magmatic properties and processes. Foremost of these are magma viscosity, gas loss and external properties such as conduit geometry. Ultimately, these parameters control the speed at which magmas ascend, decompress and outgas en route to the surface, and thus determine eruptive style and evolution.

234 citations