scispace - formally typeset
Search or ask a question
Author

Andrea Endimiani

Bio: Andrea Endimiani is an academic researcher from University of Bern. The author has contributed to research in topics: Klebsiella pneumoniae & Acinetobacter baumannii. The author has an hindex of 47, co-authored 169 publications receiving 7468 citations. Previous affiliations of Andrea Endimiani include University of Pittsburgh & Case Western Reserve University.


Papers
More filters
Journal ArticleDOI
TL;DR: The current “state of the art” of carbapenem antibiotics and their role in the antimicrobial armamentarium are summarized and the medicinal chemist is urged to continue development of these versatile and potent compounds.
Abstract: In this review, we summarize the current "state of the art" of carbapenem antibiotics and their role in our antimicrobial armamentarium. Among the β-lactams currently available, carbapenems are unique because they are relatively resistant to hydrolysis by most β-lactamases, in some cases act as "slow substrates" or inhibitors of β-lactamases, and still target penicillin binding proteins. This "value-added feature" of inhibiting β-lactamases serves as a major rationale for expansion of this class of β-lactams. We describe the initial discovery and development of the carbapenem family of β-lactams. Of the early carbapenems evaluated, thienamycin demonstrated the greatest antimicrobial activity and became the parent compound for all subsequent carbapenems. To date, more than 80 compounds with mostly improved antimicrobial properties, compared to those of thienamycin, are described in the literature. We also highlight important features of the carbapenems that are presently in clinical use: imipenem-cilastatin, meropenem, ertapenem, doripenem, panipenem-betamipron, and biapenem. In closing, we emphasize some major challenges and urge the medicinal chemist to continue development of these versatile and potent compounds, as they have served us well for more than 3 decades.

1,056 citations

Journal ArticleDOI
TL;DR: Structural studies of ESBLs indicate that active site expansion and remodeling are responsible for this extended hydrolytic activity, and most relevant are the increasing concerns regarding the status of carbapenems as 'best therapy' for ESBL-producing bacteria in light of the emergence ofcarbapenemases.

304 citations

Journal ArticleDOI
TL;DR: The aspects related to the spread of the above MDR organisms among pigs, cattle, and poultry are described, focusing on epidemiology, molecular mechanisms of resistance, impact of antibiotic use, and strategies to contain the overall problem.

242 citations

Journal ArticleDOI
TL;DR: The complex beta-lactamase background of KPC-Kp isolates that are emerging in multiple centres in the Eastern USA demonstrated the prevalence of a single dominant clone suggests that interstate transmission has occurred.
Abstract: Background The emergence of blaKPC-containing Klebsiella pneumoniae (KPC-Kp) isolates is attracting significant attention. Outbreaks in the Eastern USA have created serious treatment and infection control problems. A comparative multi-institutional analysis of these strains has not yet been performed.

214 citations

Journal ArticleDOI
TL;DR: Transmission of extended-spectrum β-lactamase–producing Enterobacteriaceae in households outweighs nosocomial dissemination in the non-outbreak setting and ESBL–Klebsiella pneumoniae might be more efficiently transmitted within the hospital than ESBL-Escherichia coli.
Abstract: Background. Studies about transmission rates of extended-spectrum β-lactamase (ESBL)–producing Enterobacteriaceae in hospitals and households are scarce. Methods. Eighty-two index patients with new carriage of ESBL-producing Escherichia coli (ESBL-Ec ;n =72) or ESBL-producing Klebsiella pneumoniae (ESBL-Kp; n =10) and their hospital (n= 112) and household (n=96) contacts were studied prospectively from May 2008 through September 2010. Isolates were phenotypically and molecularly characterized (sequencing of bla genes, repetitive extragenic palindromic polymerase chain reaction, pulse-field gel electrophoresis, and multilocus sequence typing). Transmission was defined as carriage of a clonallyrelated ESBL producer with identical blaESBL gene(s) in the index patient and his or her contact(s). Results. CTX-M-15 was the most prevalent ESBL in ESBL-Ec (58%) and ESBL-Kp (70%) in the index patients. Twenty (28%) ESBL-Ec isolates were of the hyperepidemic clone ST131. In the hospital, transmission rates were 4.5% (ESBL-Ec )a nd 8.3% (ESBL-Kp) and the incidences of transmissions were 5.6 (Ec )a nd 13.9 (Kp) per 1000 exposure days, respectively. Incidence of ESBL-Kp hospital transmission was significantly higher than that of ESBL-Ec (P< .0001), despite implementation of infection control measures in 75% of ESBL-Kp index patients but only 22% of ESBL-Ec index patients. Detection of ESBL producers not linked to an index patient was as frequent (ESBL-Ec, 5.7%; ESBL-Kp, 16.7%) as nosocomial transmission events. In households, transmission rates were 23% for ESBL-Ec and 25% for ESBL-Kp. Conclusions. Household outweighs nosocomial transmission of ESBL producers. The effect of hospital infection control measures may differ between different species and clones of ESBL producers.

200 citations


Cited by
More filters
01 Jun 2012
TL;DR: SPAdes as mentioned in this paper is a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler and on popular assemblers Velvet and SoapDeNovo (for multicell data).
Abstract: The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online ( http://bioinf.spbau.ru/spades ). It is distributed as open source software.

10,124 citations

Journal ArticleDOI
TL;DR: Extended-spectrum β-lactamases represent an impressive example of the ability of gram-negative bacteria to develop new antibiotic resistance mechanisms in the face of the introduction of new antimicrobial agents.
Abstract: Extended-spectrum β-lactamases (ESBLs) are a rapidly evolving group of β-lactamases which share the ability to hydrolyze third-generation cephalosporins and aztreonam yet are inhibited by clavulanic acid. Typically, they derive from genes for TEM-1, TEM-2, or SHV-1 by mutations that alter the amino acid configuration around the active site of these β-lactamases. This extends the spectrum of β-lactam antibiotics susceptible to hydrolysis by these enzymes. An increasing number of ESBLs not of TEM or SHV lineage have recently been described. The presence of ESBLs carries tremendous clinical significance. The ESBLs are frequently plasmid encoded. Plasmids responsible for ESBL production frequently carry genes encoding resistance to other drug classes (for example, aminoglycosides). Therefore, antibiotic options in the treatment of ESBL-producing organisms are extremely limited. Carbapenems are the treatment of choice for serious infections due to ESBL-producing organisms, yet carbapenem-resistant isolates have recently been reported. ESBL-producing organisms may appear susceptible to some extended-spectrum cephalosporins. However, treatment with such antibiotics has been associated with high failure rates. There is substantial debate as to the optimal method to prevent this occurrence. It has been proposed that cephalosporin breakpoints for the Enterobacteriaceae should be altered so that the need for ESBL detection would be obviated. At present, however, organizations such as the Clinical and Laboratory Standards Institute (formerly the National Committee for Clinical Laboratory Standards) provide guidelines for the detection of ESBLs in klebsiellae and Escherichia coli. In common to all ESBL detection methods is the general principle that the activity of extended-spectrum cephalosporins against ESBL-producing organisms will be enhanced by the presence of clavulanic acid. ESBLs represent an impressive example of the ability of gram-negative bacteria to develop new antibiotic resistance mechanisms in the face of the introduction of new antimicrobial agents.

3,308 citations

Journal ArticleDOI
TL;DR: The global situation of antibiotic resistance, its major causes and consequences, and key areas in which action is urgently needed are described and identified.
Abstract: The causes of antibiotic resistance are complex and include human behaviour at many levels of society; the consequences affect everybody in the world. Similarities with climate change are evident. Many efforts have been made to describe the many different facets of antibiotic resistance and the interventions needed to meet the challenge. However, coordinated action is largely absent, especially at the political level, both nationally and internationally. Antibiotics paved the way for unprecedented medical and societal developments, and are today indispensible in all health systems. Achievements in modern medicine, such as major surgery, organ transplantation, treatment of preterm babies, and cancer chemotherapy, which we today take for granted, would not be possible without access to effective treatment for bacterial infections. Within just a few years, we might be faced with dire setbacks, medically, socially, and economically, unless real and unprecedented global coordinated actions are immediately taken. Here, we describe the global situation of antibiotic resistance, its major causes and consequences, and identify key areas in which action is urgently needed.

3,181 citations

01 Sep 2008
TL;DR: The Methodology used to Prepare the Guideline Epidemiology Incidence Etiology and Recommendations for Assessing Response to Therapy Suggested Performance Indicators is summarized.
Abstract: Executive Summary Introduction Methodology Used to Prepare the Guideline Epidemiology Incidence Etiology Major Epidemiologic Points Pathogenesis Major Points for Pathogenesis Modifiable Risk Factors Intubation and Mechanical Ventilation Aspiration, Body Position, and Enteral Feeding Modulation of Colonization: Oral Antiseptics and Antibiotics Stress Bleeding Prophylaxis, Transfusion, and Glucose Control Major Points and Recommendations for Modifiable Risk Factors Diagnostic Testing Major Points and Recommendations for Diagnosis Diagnostic Strategies and Approaches Clinical Strategy Bacteriologic Strategy Recommended Diagnostic Strategy Major Points and Recommendations for Comparing Diagnostic Strategies Antibiotic Treatment of Hospital-acquired Pneumonia General Approach Initial Empiric Antibiotic Therapy Appropriate Antibiotic Selection and Adequate Dosing Local Instillation and Aerosolized Antibiotics Combination versus Monotherapy Duration of Therapy Major Points and Recommendations for Optimal Antibiotic Therapy Specific Antibiotic Regimens Antibiotic Heterogeneity and Antibiotic Cycling Response to Therapy Modification of Empiric Antibiotic Regimens Defining the Normal Pattern of Resolution Reasons for Deterioration or Nonresolution Evaluation of the Nonresponding Patient Major Points and Recommendations for Assessing Response to Therapy Suggested Performance Indicators

2,961 citations