scispace - formally typeset
Search or ask a question
Author

Andrea Fedele

Bio: Andrea Fedele is an academic researcher. The author has contributed to research in topics: Respiratory distress & ARDS. The author has an hindex of 1, co-authored 1 publications receiving 2 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors provide an overview of possible interaction between patients' microbiota dysbiosis and clinical status of severe acute respiratory syndrome coronavirus disease 2019 with acute respiratory distress syndrome (ARDS), taking into consideration the characteristic hyperinflammatory state of this condition, respiratory distress, and provides an overview on possible nutritional strategies for critically ill patients with COVID19-ARDS.
Abstract: In late December 2019, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) quickly spread worldwide, and the syndrome it causes, coronavirus disease 2019 (COVID-19), has reached pandemic proportions. Around 30% of patients with COVID-19 experience severe respiratory distress and are admitted to the intensive care unit for comprehensive critical care. Patients with COVID-19 often present an enhanced immune response with a hyperinflammatory state characterized by a "cytokine storm," which may reflect changes in the microbiota composition. Moreover, the evolution to acute respiratory distress syndrome (ARDS) may increase the severity of COVID-19 and related dysbiosis. During critical illness, the multitude of therapies administered, including antibiotics, sedatives, analgesics, body position, invasive mechanical ventilation, and nutritional support, may enhance the inflammatory response and alter the balance of patients' microbiota. This status of dysbiosis may lead to hyper vulnerability in patients and an inappropriate response to critical circumstances. In this context, the aim of our narrative review is to provide an overview of possible interaction between patients' microbiota dysbiosis and clinical status of severe COVID-19 with ARDS, taking into consideration the characteristic hyperinflammatory state of this condition, respiratory distress, and provide an overview on possible nutritional strategies for critically ill patients with COVID-19-ARDS.

13 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A narrative review aims to identify laboratory biomarkers that have shown significant diagnostic and prognostic value for risk stratification in COVID-19 and discusses the possible clinical application of novel analytic strategies, like metabolomics and proteomics.
Abstract: Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) causes a wide spectrum of clinical manifestations, with progression to multiorgan failure in the most severe cases. Several biomarkers can be altered in coronavirus disease 2019 (COVID-19), and they can be associated with diagnosis, prognosis, and outcomes. The most used biomarkers in COVID-19 include several proinflammatory cytokines, neuron-specific enolase (NSE), lactate dehydrogenase (LDH), aspartate transaminase (AST), neutrophil count, neutrophils-to-lymphocytes ratio, troponins, creatine kinase (MB), myoglobin, D-dimer, brain natriuretic peptide (BNP), and its N-terminal pro-hormone (NT-proBNP). Some of these biomarkers can be readily used to predict disease severity, hospitalization, intensive care unit (ICU) admission, and mortality, while others, such as metabolomic and proteomic analysis, have not yet translated to clinical practice. This narrative review aims to identify laboratory biomarkers that have shown significant diagnostic and prognostic value for risk stratification in COVID-19 and discuss the possible clinical application of novel analytic strategies, like metabolomics and proteomics. Future research should focus on identifying a limited but essential number of laboratory biomarkers to easily predict prognosis and outcome in severe COVID-19.

40 citations

Journal ArticleDOI
TL;DR: A study showed a significant change of gut microbiome composition in COVID-19 patients compared with healthy individuals and proposed the gut microbiota as a potential diagnostic, prognostic, and therapeutic strategy for CO VID-19.
Abstract: Introduction The Coronavirus Disease 2019 (COVID-19) pandemic caused by Severe Acute Respiratory Coronavirus 2 (SARS-CoV-2) emerged in late December 2019. Considering the important role of gut microbiota in maturation, regulation, and induction of the immune system and subsequent inflammatory processes, it seems that evaluating the composition of gut microbiota in COVID-19 patients compared with healthy individuals may have potential value as a diagnostic and/or prognostic biomarker for the disease. Also, therapeutic interventions affecting gut microbial flora may open new horizons in the treatment of COVID-19 patients and accelerating their recovery. Methods A systematic search was conducted for relevant studies published from December 2019 to December 2021 using Pubmed/Medline, Embase, and Scopus. Articles containing the following keywords in titles or abstracts were selected: “SARS-CoV-2” or “COVID-19” or “Coronavirus Disease 19” and “gastrointestinal microbes” or “dysbiosis” or “gut microbiota” or “gut bacteria” or “gut microbes” or “gastrointestinal microbiota”. Results Out of 1,668 studies, 22 articles fulfilled the inclusion criteria and a total of 1,255 confirmed COVID-19 patients were examined. All included studies showed a significant association between COVID-19 and gut microbiota dysbiosis. The most alteration in bacterial composition of COVID-19 patients was depletion in genera Ruminococcus, Alistipes, Eubacterium, Bifidobacterium, Faecalibacterium, Roseburia, Fusicathenibacter, and Blautia and enrichment of Eggerthella, Bacteroides, Actinomyces, Clostridium, Streptococcus, Rothia, and Collinsella. Also, some gut microbiome alterations were associated with COVID-19 severity and poor prognosis including the increment of Bacteroides, Parabacteroides, Clostridium, Bifidobacterium, Ruminococcus, Campylobacter, Rothia, Corynebacterium, Megasphaera, Enterococcus, and Aspergillus spp. and the decrement of Roseburia, Eubacterium, Lachnospira, Faecalibacterium, and the Firmicutes/Bacteroidetes ratio. Conclusion Our study showed a significant change of gut microbiome composition in COVID-19 patients compared with healthy individuals. This great extent of impact has proposed the gut microbiota as a potential diagnostic, prognostic, and therapeutic strategy for COVID-19. There is much evidence about this issue, and it is expected to be increased in near future.

24 citations

Journal ArticleDOI
TL;DR: In this article, the authors discuss the role of probiotics in restoring the balance of the gut microbiota and modulation of cytokine storm, which can help manage the mortality and morbidity rates associated with SARS-CoV-2 infection.
Abstract: Introduction Human gut microbiota plays a crucial role in providing protective responses against pathogens, particularly by regulating immune system homeostasis. There is a reciprocal interaction between the gut and lung microbiota, called the gut-lung axis (GLA). Any alteration in the gut microbiota or their metabolites can cause immune dysregulation, which can impair the antiviral activity of the immune system against respiratory viruses such as severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2. Areas covered This narrative review mainly outlines emerging data on the mechanisms underlying the interactions between the immune system and intestinal microbial dysbiosis, which is caused by an imbalance in the levels of essential metabolites. The authors will also discuss the role of probiotics in restoring the balance of the gut microbiota and modulation of cytokine storm. Expert opinion Microbiota-derived signals regulate the immune system and protect different tissues during severe viral respiratory infections. The GLA's equilibration could help manage the mortality and morbidity rates associated with SARS-CoV-2 infection.

23 citations

Journal ArticleDOI
TL;DR: In this paper , the authors discuss the existing knowledge of the virulence characteristics of Candida spp. and summarize the key concepts in possible molecular pathogenesis, and analyze the predisposing factors that make COVID-19 patients more susceptible to candidiasis.
Abstract: The coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is threatening public health. A large number of affected people need to be hospitalized. Immunocompromised patients and ICU-admitted patients are predisposed to further bacterial and fungal infections, making patient outcomes more critical. Among them, COVID-19-associated candidiasis is becoming more widely recognized as a part of severe COVID-19 sequelae. While the molecular pathophysiology is not fully understood, some factors, including a compromised immune system, iron and zinc deficiencies, and nosocomial and iatrogenic transmissions, predispose COVID-19 patients to candidiasis. In this review, we discuss the existing knowledge of the virulence characteristics of Candida spp. and summarize the key concepts in the possible molecular pathogenesis. We analyze the predisposing factors that make COVID-19 patients more susceptible to candidiasis and the preventive measures which will provide valuable insights to guide the effective prevention of candidiasis in COVID-19 patients.

18 citations

Journal ArticleDOI
TL;DR: In this paper , a narrative review assesses recent evidence regarding genomics, proteomics, and metabolomics in acute respiratory distress syndrome (ARDS) research, which may help differentiate between different types of damage and predict clinical outcome and risk.
Abstract: Abstract In the last decade, research on acute respiratory distress syndrome (ARDS) has made considerable progress. However, ARDS remains a leading cause of mortality in the intensive care unit. ARDS presents distinct subphenotypes with different clinical and biological features. The pathophysiologic mechanisms of ARDS may contribute to the biological variability and partially explain why some pharmacologic therapies for ARDS have failed to improve patient outcomes. Therefore, identifying ARDS variability and heterogeneity might be a key strategy for finding effective treatments. Research involving studies on biomarkers and genomic, metabolomic, and proteomic technologies is increasing. These new approaches, which are dedicated to the identification and quantitative analysis of components from biological matrixes, may help differentiate between different types of damage and predict clinical outcome and risk. Omics technologies offer a new opportunity for the development of diagnostic tools and personalized therapy in ARDS. This narrative review assesses recent evidence regarding genomics, proteomics, and metabolomics in ARDS research.

7 citations