scispace - formally typeset

Author

Andrea Goldsmith

Bio: Andrea Goldsmith is an academic researcher from Princeton University. The author has contributed to research in topic(s): Communication channel & Fading. The author has an hindex of 97, co-authored 793 publication(s) receiving 61845 citation(s). Previous affiliations of Andrea Goldsmith include California Institute of Technology & Harvard University.
Papers
More filters

Book
01 Jan 2005-

9,031 citations


Journal ArticleDOI
24 Apr 2009-
TL;DR: This information-theoretic survey provides guidelines for the spectral efficiency gains possible through cognitive radios, as well as practical design ideas to mitigate the coexistence challenges in today's crowded spectrum.
Abstract: Cognitive radios hold tremendous promise for increasing spectral efficiency in wireless systems. This paper surveys the fundamental capacity limits and associated transmission techniques for different wireless network design paradigms based on this promising technology. These paradigms are unified by the definition of a cognitive radio as an intelligent wireless communication device that exploits side information about its environment to improve spectrum utilization. This side information typically comprises knowledge about the activity, channels, codebooks, and/or messages of other nodes with which the cognitive node shares the spectrum. Based on the nature of the available side information as well as a priori rules about spectrum usage, cognitive radio systems seek to underlay, overlay, or interweave the cognitive radios' signals with the transmissions of noncognitive nodes. We provide a comprehensive summary of the known capacity characterizations in terms of upper and lower bounds for each of these three approaches. The increase in system degrees of freedom obtained through cognitive radios is also illuminated. This information-theoretic survey provides guidelines for the spectral efficiency gains possible through cognitive radios, as well as practical design ideas to mitigate the coexistence challenges in today's crowded spectrum.

2,404 citations


Journal ArticleDOI
TL;DR: An overview of the extensive results on the Shannon capacity of single-user and multiuser multiple-input multiple-output (MIMO) channels is provided and it is shown that the capacity region of the MIMO multiple access and the largest known achievable rate region (called the dirty-paper region) for the M IMO broadcast channel are intimately related via a duality transformation.
Abstract: We provide an overview of the extensive results on the Shannon capacity of single-user and multiuser multiple-input multiple-output (MIMO) channels. Although enormous capacity gains have been predicted for such channels, these predictions are based on somewhat unrealistic assumptions about the underlying time-varying channel model and how well it can be tracked at the receiver, as well as at the transmitter. More realistic assumptions can dramatically impact the potential capacity gains of MIMO techniques. For time-varying MIMO channels there are multiple Shannon theoretic capacity definitions and, for each definition, different correlation models and channel information assumptions that we consider. We first provide a comprehensive summary of ergodic and capacity versus outage results for single-user MIMO channels. These results indicate that the capacity gain obtained from multiple antennas heavily depends on the available channel information at either the receiver or transmitter, the channel signal-to-noise ratio, and the correlation between the channel gains on each antenna element. We then focus attention on the capacity region of the multiple-access channels (MACs) and the largest known achievable rate region for the broadcast channel. In contrast to single-user MIMO channels, capacity results for these multiuser MIMO channels are quite difficult to obtain, even for constant channels. We summarize results for the MIMO broadcast and MAC for channels that are either constant or fading with perfect instantaneous knowledge of the antenna gains at both transmitter(s) and receiver(s). We show that the capacity region of the MIMO multiple access and the largest known achievable rate region (called the dirty-paper region) for the MIMO broadcast channel are intimately related via a duality transformation. This transformation facilitates finding the transmission strategies that achieve a point on the boundary of the MIMO MAC capacity region in terms of the transmission strategies of the MIMO broadcast dirty-paper region and vice-versa. Finally, we discuss capacity results for multicell MIMO channels with base station cooperation. The base stations then act as a spatially diverse antenna array and transmission strategies that exploit this structure exhibit significant capacity gains. This section also provides a brief discussion of system level issues associated with MIMO cellular. Open problems in this field abound and are discussed throughout the paper.

2,360 citations


Journal ArticleDOI
Andrea Goldsmith1, Soon-Ghee ChuaInstitutions (1)
28 Apr 1996-
TL;DR: There is a constant power gap between the spectral efficiency of the proposed technique and the channel capacity, and this gap is a simple function of the required bit-error rate (BER).
Abstract: We propose a variable-rate and variable-power MQAM modulation scheme for high-speed data transmission over fading channels. We first review results for the Shannon capacity of fading channels with channel side information, where capacity is achieved using adaptive transmission techniques. We then derive the spectral efficiency of our proposed modulation. We show that there is a constant power gap between the spectral efficiency of our proposed technique and the channel capacity, and this gap is a simple function of the required bit-error rate (BER). In addition, using just five or six different signal constellations, we achieve within 1-2 dB of the maximum efficiency using unrestricted constellation sets. We compute the rate at which the transmitter needs to update its power and rate as a function of the channel Doppler frequency for these constellation sets. We also obtain the exact efficiency loss for smaller constellation sets, which may be required if the transmitter adaptation rate is constrained by hardware limitations. Our modulation scheme exhibits a 5-10-dB power gain relative to variable-power fixed-rate transmission, and up to 20 dB of gain relative to nonadaptive transmission. We also determine the effect of channel estimation error and delay on the BER performance of our adaptive scheme. We conclude with a discussion of coding techniques and the relationship between our proposed modulation and Shannon capacity.

2,322 citations


Journal ArticleDOI
Andrea Goldsmith1, Pravin Varaiya2Institutions (2)
TL;DR: The Shannon capacity of a fading channel with channel side information at the transmitter and receiver, and at the receiver alone is obtained, analogous to water-pouring in frequency for time-invariant frequency-selective fading channels.
Abstract: We obtain the Shannon capacity of a fading channel with channel side information at the transmitter and receiver, and at the receiver alone. The optimal power adaptation in the former case is "water-pouring" in time, analogous to water-pouring in frequency for time-invariant frequency-selective fading channels. Inverting the channel results in a large capacity penalty in severe fading.

2,107 citations


Cited by
More filters

Christopher M. Bishop1Institutions (1)
01 Jan 2006-
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations


Book
01 Jan 2005-

9,031 citations


Journal ArticleDOI
Piyush Gupta1, P. R. Kumar1Institutions (1)
TL;DR: When n identical randomly located nodes, each capable of transmitting at W bits per second and using a fixed range, form a wireless network, the throughput /spl lambda/(n) obtainable by each node for a randomly chosen destination is /spl Theta/(W//spl radic/(nlogn)) bits persecond under a noninterference protocol.
Abstract: When n identical randomly located nodes, each capable of transmitting at W bits per second and using a fixed range, form a wireless network, the throughput /spl lambda/(n) obtainable by each node for a randomly chosen destination is /spl Theta/(W//spl radic/(nlogn)) bits per second under a noninterference protocol. If the nodes are optimally placed in a disk of unit area, traffic patterns are optimally assigned, and each transmission's range is optimally chosen, the bit-distance product that can be transported by the network per second is /spl Theta/(W/spl radic/An) bit-meters per second. Thus even under optimal circumstances, the throughput is only /spl Theta/(W//spl radic/n) bits per second for each node for a destination nonvanishingly far away. Similar results also hold under an alternate physical model where a required signal-to-interference ratio is specified for successful receptions. Fundamentally, it is the need for every node all over the domain to share whatever portion of the channel it is utilizing with nodes in its local neighborhood that is the reason for the constriction in capacity. Splitting the channel into several subchannels does not change any of the results. Some implications may be worth considering by designers. Since the throughput furnished to each user diminishes to zero as the number of users is increased, perhaps networks connecting smaller numbers of users, or featuring connections mostly with nearby neighbors, may be more likely to be find acceptance.

8,892 citations


Proceedings Article
01 Jan 2005-
TL;DR: This book aims to provide a chronology of key events and individuals involved in the development of microelectronics technology over the past 50 years and some of the individuals involved have been identified and named.
Abstract: Alhussein Abouzeid Rensselaer Polytechnic Institute Raviraj Adve University of Toronto Dharma Agrawal University of Cincinnati Walid Ahmed Tyco M/A-COM Sonia Aissa University of Quebec, INRSEMT Huseyin Arslan University of South Florida Nallanathan Arumugam National University of Singapore Saewoong Bahk Seoul National University Claus Bauer Dolby Laboratories Brahim Bensaou Hong Kong University of Science and Technology Rick Blum Lehigh University Michael Buehrer Virginia Tech Antonio Capone Politecnico di Milano Javier Gómez Castellanos National University of Mexico Claude Castelluccia INRIA Henry Chan The Hong Kong Polytechnic University Ajit Chaturvedi Indian Institute of Technology Kanpur Jyh-Cheng Chen National Tsing Hua University Yong Huat Chew Institute for Infocomm Research Tricia Chigan Michigan Tech Dong-Ho Cho Korea Advanced Institute of Science and Tech. Jinho Choi University of New South Wales Carlos Cordeiro Philips Research USA Laurie Cuthbert Queen Mary University of London Arek Dadej University of South Australia Sajal Das University of Texas at Arlington Franco Davoli DIST University of Genoa Xiaodai Dong, University of Alberta Hassan El-sallabi Helsinki University of Technology Ozgur Ercetin Sabanci University Elza Erkip Polytechnic University Romano Fantacci University of Florence Frank Fitzek Aalborg University Mario Freire University of Beira Interior Vincent Gaudet University of Alberta Jairo Gutierrez University of Auckland Michael Hadjitheodosiou University of Maryland Zhu Han University of Maryland College Park Christian Hartmann Technische Universitat Munchen Hossam Hassanein Queen's University Soong Boon Hee Nanyang Technological University Paul Ho Simon Fraser University Antonio Iera University "Mediterranea" of Reggio Calabria Markku Juntti University of Oulu Stefan Kaiser DoCoMo Euro-Labs Nei Kato Tohoku University Dongkyun Kim Kyungpook National University Ryuji Kohno Yokohama National University Bhaskar Krishnamachari University of Southern California Giridhar Krishnamurthy Indian Institute of Technology Madras Lutz Lampe University of British Columbia Bjorn Landfeldt The University of Sydney Peter Langendoerfer IHP Microelectronics Technologies Eddie Law Ryerson University in Toronto

7,279 citations


Journal ArticleDOI
TL;DR: Results show that, even though the interuser channel is noisy, cooperation leads not only to an increase in capacity for both users but also to a more robust system, where users' achievable rates are less susceptible to channel variations.
Abstract: Mobile users' data rate and quality of service are limited by the fact that, within the duration of any given call, they experience severe variations in signal attenuation, thereby necessitating the use of some type of diversity. In this two-part paper, we propose a new form of spatial diversity, in which diversity gains are achieved via the cooperation of mobile users. Part I describes the user cooperation strategy, while Part II (see ibid., p.1939-48) focuses on implementation issues and performance analysis. Results show that, even though the interuser channel is noisy, cooperation leads not only to an increase in capacity for both users but also to a more robust system, where users' achievable rates are less susceptible to channel variations.

6,572 citations


Network Information
Related Authors (5)
Shlomo Shamai

800 papers, 42.8K citations

94% related
Elza Erkip

401 papers, 25.6K citations

93% related
Syed A. Jafar

387 papers, 34.7K citations

92% related
Osvaldo Simeone

639 papers, 17.3K citations

90% related
H.V. Poor

398 papers, 30.2K citations

88% related
Performance
Metrics

Author's H-index: 97

No. of papers from the Author in previous years
YearPapers
202119
202027
201927
201841
201743
201640