scispace - formally typeset
Search or ask a question
Author

Andrea Irene Romero

Bio: Andrea Irene Romero is an academic researcher from Facultad de Ciencias Exactas y Naturales. The author has contributed to research in topics: Xylariaceae & Podocarpus parlatorei. The author has an hindex of 15, co-authored 75 publications receiving 1448 citations. Previous affiliations of Andrea Irene Romero include University of Buenos Aires & National Scientific and Technical Research Council.


Papers
More filters
Journal ArticleDOI
TL;DR: The present paper introduces the FoF database to the scientific community and briefly reviews some of the problems associated with classification and identification of the main fungal groups.
Abstract: Taxonomic names are key links between various databases that store information on different organisms. Several global fungal nomenclural and taxonomic databases (notably Index Fungorum, Species Fungorum and MycoBank) can be sourced to find taxonomic details about fungi, while DNA sequence data can be sourced from NCBI, EBI and UNITE databases. Although the sequence data may be linked to a name, the quality of the metadata is variable and generally there is no corresponding link to images, descriptions or herbarium material. There is generally no way to establish the accuracy of the names in these genomic databases, other than whether the submission is from a reputable source. To tackle this problem, a new database (FacesofFungi), accessible at www.facesoffungi.org (FoF) has been established. This fungal database allows deposition of taxonomic data, phenotypic details and other useful data, which will enhance our current taxonomic understanding and ultimately enable mycologists to gain better and updated insights into the current fungal classification system. In addition, the database will also allow access to comprehensive metadata including descriptions of voucher and type specimens. This database is user-friendly, providing links and easy access between taxonomic ranks, with the classification system based primarily on molecular data (from the literature and via updated web-based phylogenetic trees), and to a lesser extent on morphological data when molecular data are unavailable. In FoF species are not only linked to the closest phylogenetic representatives, but also relevant data is provided, wherever available, on various applied aspects, such as ecological, industrial, quarantine and chemical uses. The data include the three main fungal groups (Ascomycota, Basidiomycota, Basal fungi) and fungus-like organisms. The FoF webpage is an output funded by the Mushroom Research Foundation which is an NGO with seven directors with mycological expertise. The webpage has 76 curators, and with the help of these specialists, FoF will provide an updated natural classification of the fungi, with illustrated accounts of species linked to molecular data. The present paper introduces the FoF database to the scientific community and briefly reviews some of the problems associated with classification and identification of the main fungal groups. The structure and use of the database is then explained. We would like to invite all mycologists to contribute to these web pages.

458 citations

Journal ArticleDOI
TL;DR: The data advances the understanding of Botryosphaeriales, there is, however, still much research to be carried out with resolution of families and genera, linkage of sexual and asexual morphs and differentiation of cryptic species.
Abstract: The type specimens of Auerswaldia, Auerswaldiella, Barriopsis, Botryosphaeria, Leptoguignardia, Melanops, Neodeightonia, Phaeobotryon, Phaeobotryosphaeria, Phyllachorella, Pyrenostigme, Saccharata, Sivanesania, Spencermartinsia and Vestergrenia were examined and fresh specimens of Botryosphaeriales were collected from Thailand. This material is used to provide a systematic treatment of Botryosphaeriales based on morphology and phylogeny. Two new genera, Botryobambusa and Cophinforma are introduced and compared with existing genera. Four species new to science, Auerswaldia dothiorella, A. lignicola, Botryosphaeria fusispora and Phaeobotryosphaeria eucalypti, are also described and justified. We accept 29 genera in Botryosphaeriales, with Macrovalsaria being newly placed. In the phylogenetic tree, the 114 strains of Botyrosphaeriales included in the analysis cluster into two major clades with 80 %, 96 % and 1.00 (MP, ML and BY) support, with Clade A containing the family type of Botryosphaeriaceae, and Clade B containing Phyllosticta, Saccharata and Melanops species. This group may represent Phyllostictaceae. In Clade A the taxa analyzed cluster in eight sub-clades (Clades A1–8). Clade A1 comprises three distinct subclusters corresponding to the genera Diplodia (Diplodia Clade), Neodeightonia (Neodeightonia Clade) and Lasiodiplodia (Lasiodiplodia Clade). Clade A2 clusters into three groups representing Phaeobotryosphaeria (100 %), Phaeobotryon (100 %) and Barriopsis (94 %). Clade A3 incorporates 17 strains that cluster into three well-supported genera (Dothiorella (86 %), Spencermartinsia (100 %) and Auerswaldia (63 %); the position of Macrophomina is not stable. Clade A4 is a single lineage (100 %) representing the new genus Botryobambusa. Clade A5 is a well-supported subclade incorporating Neofussicoccum. Clade A6 represents the type species of Botryosphaeria, three other Botryosphaeria species and two other genera, Neoscytalidium and Cophinforma gen. nov. Clade A7 comprises two Pseudofusicoccum species and Clade A8 has two Aplosporella species. These sub-clades may eventually require separate families but this requires analysis of a much larger dataset. Our data advances the understanding of Botryosphaeriales, there is, however, still much research to be carried out with resolution of families and genera, linkage of sexual and asexual morphs and differentiation of cryptic species.

216 citations

Journal ArticleDOI
Kevin D. Hyde, Chada Norphanphoun, V.P. Abreu1, Anna L. Bazzicalupo2, K. W. Thilini Chethana3, Marco Clericuzio4, Monika C. Dayarathne3, Asha J. Dissanayake3, Anusha H. Ekanayaka3, Anusha H. Ekanayaka5, Mao-Qiang He6, Mao-Qiang He3, Mao-Qiang He7, Sinang Hongsanan3, Shi-Ke Huang3, Subashini C. Jayasiri, Ruvishika S. Jayawardena3, Anuruddha Karunarathna, Sirinapa Konta3, I. Kusan, Hyun Lee8, Junfu Li3, Chuan-Gen Lin3, Ning-Guo Liu, Yong-Zhong Lu, Zong-Long Luo9, Zong-Long Luo3, Ishara S. Manawasinghe3, Ausana Mapook, Rekhani H. Perera, Rungtiwa Phookamsak10, Rungtiwa Phookamsak3, Rungtiwa Phookamsak5, Chayanard Phukhamsakda, Igor Siedlecki11, Adriene Mayra Soares12, Danushka S. Tennakoon3, Qing Tian3, Saowaluck Tibpromma, Dhanushka N. Wanasinghe, Yuan-Pin Xiao, Jing Yang, Xiang-Yu Zeng3, Xiang-Yu Zeng13, Faten A. Abdel-Aziz14, Wen-Jing Li, Indunil C. Senanayake, Qiu-Ju Shang3, Dinushani A. Daranagama3, Nimali I. de Silva, Kasun M. Thambugala, Mohamed A. Abdel-Wahab14, Ali H. Bahkali15, Mary L. Berbee2, Saranyaphat Boonmee3, D. Jayarama Bhat16, Timur S. Bulgakov, Bart Buyck17, Erio Camporesi, Rafael F. Castañeda-Ruiz, Putarak Chomnunti3, Minkwan Doilom3, Francesco Dovana18, Tatiana Baptista Gibertoni12, M. Jadan, Rajesh Jeewon19, E. B. Gareth Jones, Ji-Chuan Kang13, Samantha C. Karunarathna5, Samantha C. Karunarathna10, Young Woon Lim8, Jian-Kui Liu, Zuo-Yi Liu, Helio Longoni Plautz, Saisamorn Lumyong7, Sajeewa S. N. Maharachchikumbura20, Neven Matočec, Eric H. C. McKenzie21, Armin Mešić, Daniel Miller, Julia Pawłowska11, Olinto Liparini Pereira1, Itthayakorn Promputtha3, Itthayakorn Promputtha7, Andrea Irene Romero22, Andrea Irene Romero23, Leif Ryvarden24, Hong-Yan Su9, Satinee Suetrong25, Zdenko Tkalčec, Alfredo Vizzini18, Ting-Chi Wen13, Komsit Wisitrassameewong8, Marta Wrzosek11, J. C. Xu3, J. C. Xu10, J. C. Xu5, Qi Zhao5, Rui-Lin Zhao6, Peter E. Mortimer6, Peter E. Mortimer5 
TL;DR: This study introduces a new family Fuscostagonosporaceae in Dothideomycetes and introduces the new ascomycete genera Acericola, Castellaniomyces, Dictyosporina and Longitudinalis.
Abstract: This is the sixth in a series of papers where we bring collaborating mycologists together to produce a set of notes of several taxa of fungi. In this study we introduce a new family Fuscostagonosporaceae in Dothideomycetes. We also introduce the new ascomycete genera Acericola, Castellaniomyces, Dictyosporina and Longitudinalis and new species Acericola italica, Alternariaster trigonosporus, Amarenomyces dactylidis, Angustimassarina coryli, Astrocystis bambusicola, Castellaniomyces rosae, Chaetothyrina artocarpi, Chlamydotubeufia krabiensis, Colletotrichum lauri, Collodiscula chiangraiensis, Curvularia palmicola, Cytospora mali-sylvestris, Dictyocheirospora cheirospora, Dictyosporina ferruginea, Dothiora coronillae, Dothiora spartii, Dyfrolomyces phetchaburiensis, Epicoccum cedri, Epicoccum pruni, Fasciatispora calami, Fuscostagonospora cytisi, Grandibotrys hyalinus, Hermatomyces nabanheensis, Hongkongmyces thailandica, Hysterium rhizophorae, Jahnula guttulaspora, Kirschsteiniothelia rostrata, Koorchalomella salmonispora, Longitudinalis nabanheensis, Lophium zalerioides, Magnibotryascoma mali, Meliola clerodendri-infortunati, Microthyrium chinense, Neodidymelliopsis moricola, Neophaeocryptopus spartii, Nigrograna thymi, Ophiocordyceps cossidarum, Ophiocordyceps issidarum, Ophiosimulans plantaginis, Otidea pruinosa, Otidea stipitata, Paucispora kunmingense, Phaeoisaria microspora, Pleurothecium floriforme, Poaceascoma halophila, Periconia aquatica, Periconia submersa, Phaeosphaeria acaciae, Phaeopoacea muriformis, Pseudopithomyces kunmingnensis, Ramgea ozimecii, Sardiniella celtidis, Seimatosporium italicum, Setoseptoria scirpi, Torula gaodangensis and Vamsapriya breviconidiophora. We also provide an amended account of Rhytidhysteron to include apothecial ascomata and a J+ hymenium. The type species of Ascotrichella hawksworthii (Xylariales genera incertae sedis), Biciliopsis leptogiicola (Sordariomycetes genera incertae sedis), Brooksia tropicalis (Micropeltidaceae), Bryochiton monascus (Teratosphaeriaceae), Bryomyces scapaniae (Pseudoperisporiaceae), Buelliella minimula (Dothideomycetes genera incertae sedis), Carinispora nypae (Pseudoastrosphaeriellaceae), Cocciscia hammeri (Verrucariaceae), Endoxylina astroidea (Diatrypaceae), Exserohilum turcicum (Pleosporaceae), Immotthia hypoxylon (Roussoellaceae), Licopolia franciscana (Vizellaceae), Murispora rubicunda (Amniculicolaceae) and Doratospora guianensis (synonymized under Rizalia guianensis, Trichosphaeriaceae) were re-examined and descriptions, illustrations and discussion on their familial placement are given based on phylogeny and morphological data. New host records or new country reports are provided for Chlamydotubeufia huaikangplaensis, Colletotrichum fioriniae, Diaporthe subclavata, Diatrypella vulgaris, Immersidiscosia eucalypti, Leptoxyphium glochidion, Stemphylium vesicarium, Tetraploa yakushimensis and Xepicula leucotricha. Diaporthe baccae is synonymized under Diaporthe rhusicola. A reference specimen is provided for Periconia minutissima. Updated phylogenetic trees are provided for most families and genera. We introduce the new basidiomycete species Agaricus purpurlesquameus, Agaricus rufusfibrillosus, Lactifluus holophyllus, Lactifluus luteolamellatus, Lactifluus pseudohygrophoroides, Russula benwooii, Russula hypofragilis, Russula obscurozelleri, Russula parapallens, Russula phoenicea, Russula pseudopelargonia, Russula pseudotsugarum, Russula rhodocephala, Russula salishensis, Steccherinum amapaense, Tephrocybella constrictospora, Tyromyces amazonicus and Tyromyces angulatus and provide updated trees to the genera. We also introduce Mortierella formicae in Mortierellales, Mucoromycota and provide an updated phylogenetic tree.

160 citations

Journal ArticleDOI
TL;DR: A comprehensive phylogenetic analysis revealed a clear-cut segregation of the Xylariaceae into several major clades, which was well in accordance with previously established morphological and chemotaxonomic concepts.
Abstract: Fil: Wendt, Lucile. Helmholtz-Zentrum fur Infektionsforschung GmbH. Department of Microbial Drugs; Alemania. German Centre for Infection Research; Alemania

142 citations

Journal ArticleDOI
08 Jun 2016
TL;DR: With the advance to one scientific name for each fungal species, the generic names in the class Sordariomycetes typified by sexual and asexual morphs are evaluated based on their type species to determine if they compete with each other for use or protection.
Abstract: With the advance to one scientific name for each fungal species, the generic names in the class Sordariomycetes typified by sexual and asexual morphs are evaluated based on their type species to determine if they compete with each other for use or protection. Recommendations are made for which of the competing generic names should be used based on criteria such as priority, number of potential names changes, and frequency of use. Some recommendations for well-known genera include Arthrinium over Apiospora, Colletotrichum over Glomerella, Menispora over Zignoella, Microdochium over Monographella, Nigrospora over Khuskia, and Plectosphaerella over Plectosporium. All competing generic names are listed in a table of recommended names along with the required action. If priority is not accorded to sexually typified generic names after 2017, only four names would require formal protection: Chaetosphaerella over Oedemium, Diatrype over Libertella, Microdochium over Monographella, and Phaeoacremonium over Romellia and Togninia. Concerning species in the recommended genera, one replacement name (Xylaria benjaminii nom. nov.) is introduced, and the following new combinations are made: Arthrinium sinense, Chloridium caesium, C. chloroconium, C. gonytrichii, Corollospora marina, C. parvula, C. ramulosa, Juncigena fruticosae, Melanospora simplex, Seimatosporium massarina, Sporoschisma daemonoropis, S. taitense, Torpedospora mangrovei, Xylaria penicilliopsis, and X. termiticola combs. nov.

71 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It seems likely that all of the older taxa linked to the Botryosphaeriaceae, and for which cultures or DNA sequence data are not available, cannot belinked to the species in this family that are known from culture, and will have to be disregarded for future use unless they are epitypified.

623 citations

Journal Article
TL;DR: The design and fabrication of a three-dimensional in vitro system to model vascular stenosis so that specific cellular interactions and responses to hemodynamic stimuli can be investigated and serve as an in vitro 3D culture system to investigate vascular pathogenesis.
Abstract: Vascular stenosis triggers adaptive cellular responses that induce adverse remodeling, which can progress to partial or complete vessel occlusion. Despite its severity, cellular interactions and biophysical cues that regulate pathological progression are poorly understood. We report the design and fabrication of a three-dimensional in vitro system to model vascular stenosis so that specific cellular interactions and responses to hemodynamic stimuli can be investigated. Tubular cellularized constructs (cytotubes) were produced using a collagen casting system to generate a stenotic arterial model. Fabrication methods were developed to create cytotubes containing co-cultured vascular cells, where cell viability, distribution, morphology, and contraction were examined (Figure). Fibroblasts, bone marrow primary cells, smooth muscle cells (SMCs), and endothelial cells (ECs) remained viable during culture and developed locationand time-dependent morphologies. We found cytotube contraction to depend on cellular composition, where SMC-EC co-cultures adopted intermediate contractile phenotypes between SMCand EC-only cytotubes. Our fabrication approach and resulting artery model can serve as an in vitro 3D culture system to investigate vascular pathogenesis.

570 citations

Journal ArticleDOI
TL;DR: Dothideomycetes comprise a highly diverse range of fungi characterized mainly by asci with two wall layers (bitunicate asci) and often with fissitunicate dehiscence, and it is hoped that by illustrating types they provide stimulation and interest so that more work is carried out in this remarkable group of fungi.
Abstract: Dothideomycetes comprise a highly diverse range of fungi characterized mainly by asci with two wall layers (bitunicate asci) and often with fissitunicate dehiscence. Many species are saprobes, with many asexual states comprising important plant pathogens. They are also endophytes, epiphytes, fungicolous, lichenized, or lichenicolous fungi. They occur in terrestrial, freshwater and marine habitats in almost every part of the world. We accept 105 families in Dothideomycetes with the new families Anteagloniaceae, Bambusicolaceae, Biatriosporaceae, Lichenoconiaceae, Muyocopronaceae, Paranectriellaceae, Roussoellaceae, Salsugineaceae, Seynesiopeltidaceae and Thyridariaceae introduced in this paper. Each family is provided with a description and notes, including asexual and asexual states, and if more than one genus is included, the type genus is also characterized. Each family is provided with at least one figure-plate, usually illustrating the type genus, a list of accepted genera, including asexual genera, and a key to these genera. A phylogenetic tree based on four gene combined analysis add support for 64 of the families and 22 orders, including the novel orders, Dyfrolomycetales, Lichenoconiales, Lichenotheliales, Monoblastiales, Natipusillales, Phaeotrichales and Strigulales. The paper is expected to provide a working document on Dothideomycetes which can be modified as new data comes to light. It is hoped that by illustrating types we provide stimulation and interest so that more work is carried out in this remarkable group of fungi.

501 citations

Journal ArticleDOI
Guo Jie Li1, Kevin D. Hyde2, Kevin D. Hyde3, Kevin D. Hyde4  +161 moreInstitutions (45)
TL;DR: This paper is a compilation of notes on 142 fungal taxa, including five new families, 20 new genera, and 100 new species, representing a wide taxonomic and geographic range.
Abstract: Notes on 113 fungal taxa are compiled in this paper, including 11 new genera, 89 new species, one new subspecies, three new combinations and seven reference specimens. A wide geographic and taxonomic range of fungal taxa are detailed. In the Ascomycota the new genera Angustospora (Testudinaceae), Camporesia (Xylariaceae), Clematidis, Crassiparies (Pleosporales genera incertae sedis), Farasanispora, Longiostiolum (Pleosporales genera incertae sedis), Multilocularia (Parabambusicolaceae), Neophaeocryptopus (Dothideaceae), Parameliola (Pleosporales genera incertae sedis), and Towyspora (Lentitheciaceae) are introduced. Newly introduced species are Angustospora nilensis, Aniptodera aquibella, Annulohypoxylon albidiscum, Astrocystis thailandica, Camporesia sambuci, Clematidis italica, Colletotrichum menispermi, C. quinquefoliae, Comoclathris pimpinellae, Crassiparies quadrisporus, Cytospora salicicola, Diatrype thailandica, Dothiorella rhamni, Durotheca macrostroma, Farasanispora avicenniae, Halorosellinia rhizophorae, Humicola koreana, Hypoxylon lilloi, Kirschsteiniothelia tectonae, Lindgomyces okinawaensis, Longiostiolum tectonae, Lophiostoma pseudoarmatisporum, Moelleriella phukhiaoensis, M. pongdueatensis, Mucoharknessia anthoxanthi, Multilocularia bambusae, Multiseptospora thysanolaenae, Neophaeocryptopus cytisi, Ocellularia arachchigei, O. ratnapurensis, Ochronectria thailandica, Ophiocordyceps karstii, Parameliola acaciae, P. dimocarpi, Parastagonospora cumpignensis, Pseudodidymosphaeria phlei, Polyplosphaeria thailandica, Pseudolachnella brevifusiformis, Psiloglonium macrosporum, Rhabdodiscus albodenticulatus, Rosellinia chiangmaiensis, Saccothecium rubi, Seimatosporium pseudocornii, S. pseudorosae, Sigarispora ononidis and Towyspora aestuari. New combinations are provided for Eutiarosporella dactylidis (sexual morph described and illustrated) and Pseudocamarosporium pini. Descriptions, illustrations and / or reference specimens are designated for Aposphaeria corallinolutea, Cryptovalsa ampelina, Dothiorella vidmadera, Ophiocordyceps formosana, Petrakia echinata, Phragmoporthe conformis and Pseudocamarosporium pini. The new species of Basidiomycota are Agaricus coccyginus, A. luteofibrillosus, Amanita atrobrunnea, A. digitosa, A. gleocystidiosa, A. pyriformis, A. strobilipes, Bondarzewia tibetica, Cortinarius albosericeus, C. badioflavidus, C. dentigratus, C. duboisensis, C. fragrantissimus, C. roseobasilis, C. vinaceobrunneus, C. vinaceogrisescens, C. wahkiacus, Cyanoboletus hymenoglutinosus, Fomitiporia atlantica, F. subtilissima, Ganoderma wuzhishanensis, Inonotus shoreicola, Lactifluus armeniacus, L. ramipilosus, Leccinum indoaurantiacum, Musumecia alpina, M. sardoa, Russula amethystina subp. tengii and R. wangii are introduced. Descriptions, illustrations, notes and / or reference specimens are designated for Clarkeinda trachodes, Dentocorticium ussuricum, Galzinia longibasidia, Lentinus stuppeus and Leptocorticium tenellum. The other new genera, species new combinations are Anaeromyces robustus, Neocallimastix californiae and Piromyces finnis from Neocallimastigomycota, Phytophthora estuarina, P. rhizophorae, Salispina, S. intermedia, S. lobata and S. spinosa from Oomycota, and Absidia stercoraria, Gongronella orasabula, Mortierella calciphila, Mucor caatinguensis, M. koreanus, M. merdicola and Rhizopus koreanus in Zygomycota.

488 citations

Journal ArticleDOI
TL;DR: Analyses of rRNA and rDNA sequences constitute an important complement of the morphological criteria needed to allow clinical fungi to be more easily identified and placed on a single phylogenetic tree.
Abstract: Fungal infections, especially those caused by opportunistic species, have become substantially more common in recent decades. Numerous species cause human infections, and several new human pathogens are discovered yearly. This situation has created an increasing interest in fungal taxonomy and has led to the development of new methods and approaches to fungal biosystematics which have promoted important practical advances in identification procedures. However, the significance of some data provided by the new approaches is still unclear, and results drawn from such studies may even increase nomenclatural confusion. Analyses of rRNA and rDNA sequences constitute an important complement of the morphological criteria needed to allow clinical fungi to be more easily identified and placed on a single phylogenetic tree. Most of the pathogenic fungi so far described belong to the kingdom Fungi; two belong to the kingdom Chromista. Within the Fungi, they are distributed in three phyla and in 15 orders (Pneumocystidales, Saccharomycetales, Dothideales, Sordariales, Onygenales, Eurotiales, Hypocreales, Ophiostomatales, Microascales, Tremellales, Poriales, Stereales, Agaricales, Schizophyllales, and Ustilaginales).

487 citations