scispace - formally typeset
Search or ask a question
Author

Andrea Jurisicova

Bio: Andrea Jurisicova is an academic researcher from University of Toronto. The author has contributed to research in topics: Blastocyst & Programmed cell death. The author has an hindex of 48, co-authored 93 publications receiving 8816 citations. Previous affiliations of Andrea Jurisicova include Mount Sinai Hospital, Toronto & Harvard University.


Papers
More filters
Journal ArticleDOI
TL;DR: Since extremely poor semen samples are the indication for intracytoplasmic sperm injection, there is a high likelihood that sperm with fragmented DNA may be selected by chance and used for oocyte injection, resulting in poor fertilization and/or cleavage rates.
Abstract: The objective of this study was to determine the incidence of DNA fragmentation in human sperm, and to correlate any detected DNA damage with semen analysis parameters and fertilization rates in in vitro fertilization (IVF). A total of 298 semen samples were collected from men in the infertility program at The Toronto Hospital. For each sample, the percentage of sperm with DNA fragmentation was determined using the method of terminal deoxynucleotidyl transferase-mediated dUTP-biotin end-labeling (TUNEL) and fluorescence-activated cell sorting. The percentage of sperm with fragmented DNA was less than 4% in the majority of samples but ranged from 5% to 40% in approximately 27% of the samples. A negative correlation was found between the percentage of DNA fragmentation and the motility, morphology, and concentration of the ejaculated sperm. In 143 IVF samples, a significant negative association was also found between the percentage of sperm with DNA fragmentation and fertilization rate (p = 0.008) and embryo cleavage rate (p = 0.01). In addition, 35 men who smoked demonstrated an increased percentage of sperm with fragmented DNA (4.7 +/- 1.2%) as compared to 78 nonsmokers (1.1 +/- 0.2%; p = 0.01). These results demonstrate a negative association between semen analysis parameters and sperm with fragmented DNA. Since extremely poor semen samples are the indication for intracytoplasmic sperm injection, there is a high likelihood that sperm with fragmented DNA may be selected by chance and used for oocyte injection, resulting in poor fertilization and/or cleavage rates.

757 citations

Journal ArticleDOI
TL;DR: Caspase-2 acts both as a positive and negative cell death effector, depending upon cell lineage and stage of development, and underwent apoptosis more effectively than wild-type neurons when deprived of NGF.
Abstract: During embryonic development, a large number of cells die naturally to shape the new organism. Members of the caspase family of proteases are essential intracellular death effectors. Herein, we generated caspase-2-deficient mice to evaluate the requirement for this enzyme in various paradigms of apoptosis. Excess numbers of germ cells were endowed in ovaries of mutant mice and the oocytes were found to be resistant to cell death following exposure to chemotherapeutic drugs. Apoptosis mediated by granzyme B and perforin was defective in caspase-2-deficient B lymphoblasts. In contrast, cell death of motor neurons during development was accelerated in caspase-2-deficient mice. In addition, caspase-2-deficient sympathetic neurons underwent apoptosis more effectively than wild-type neurons when deprived of NGF. Thus, caspase-2 acts both as a positive and negative cell death effector, depending upon cell lineage and stage of development.

687 citations

Journal ArticleDOI
TL;DR: The results suggest that when poor-quality semen samples are used for ICSI, there is a greater likelihood that some sperm selected for injection, despite appearing normal, contain fragmented DNA.

485 citations

Journal ArticleDOI
TL;DR: Oocytes in human ovarian biopsies grafted into immunodeficient mice also accumulate Bax and undergo apoptosis after PAH exposure in vivo, indicating that Ahr-driven Bax transcription is a novel and evolutionarily conserved cell-death signaling pathway responsible for environmental toxicant-induced ovarian failure.
Abstract: Polycyclic aromatic hydrocarbons (PAHs) are toxic chemicals released into the environment by fossil fuel combustion. Moreover, a primary route of human exposure to PAHs is tobacco smoke. Oocyte destruction and ovarian failure occur in PAH-treated mice, and cigarette smoking causes early menopause in women. In many cells, PAHs activate the aromatic hydrocarbon receptor (Ahr), a member of the Per-Arnt-Sim family of transcription factors. The Ahr is also activated by dioxin, one of the most intensively studied environmental contaminants. Here we show that an exposure of mice to PAHs induces the expression of Bax in oocytes, followed by apoptosis. Ovarian damage caused by PAHs is prevented by Ahr or Bax inactivation. Oocytes microinjected with a Bax promoter-reporter construct show Ahr-dependent transcriptional activation after PAH, but not dioxin, treatment, consistent with findings that dioxin is not cytotoxic to oocytes. This difference in the action of PAHs versus dioxin is conveyed by a single base pair flanking each Ahr response element in the Bax promoter. Oocytes in human ovarian biopsies grafted into immunodeficient mice also accumulate Bax and undergo apoptosis after PAH exposure in vivo. Thus, Ahr-driven Bax transcription is a novel and evolutionarily conserved cell-death signaling pathway responsible for environmental toxicant-induced ovarian failure.

454 citations

Journal ArticleDOI
TL;DR: ROS can cause an increase in DNA fragmentation and pretreatment with antioxidants can reduce DNA damage, and the addition of antioxidants significantly decreased the amount of DNA damage induced by ROS generation.
Abstract: The objective of this study was to evaluate the effect of the generation of reactive oxygen species (ROS) on the integrity of the DNA of human spermatozoa, and to determine if pretreatment with antioxidants can reduce DNA damage. Samples were obtained from 47 men undergoing infertility investigation. ROS were generated in the samples by the addition of xanthine/xanthine oxidase (X/XO) with or without antioxidants. After incubation at timed intervals (0-2 h) with X/XO, the percentage of spermatozoa with DNA fragmentation was determined using the method of TdT-mediated DNA end-labelling (TUNEL). Time intervals were selected to mimic the clinical situation in which spermatozoa are held for a period of time after swim-up while the oocytes are prepared for ICSI. A significant increase in sperm DNA damage was evident when samples were incubated in the presence of ROS for intervals of 1 and 2 h, but not when incubated with ROS for <1 h (P = 0.0001). The addition of antioxidants significantly decreased the amount of DNA damage induced by ROS generation (P < 0.04). ROS can cause an increase in DNA fragmentation and pretreatment with antioxidants can reduce DNA damage.

449 citations


Cited by
More filters
01 Jan 1999
TL;DR: Caspases, a family of cysteine-dependent aspartate-directed proteases, are prominent among the death proteases as discussed by the authors, and they play critical roles in initiation and execution of this process.
Abstract: ■ Abstract Apoptosis is a genetically programmed, morphologically distinct form of cell death that can be triggered by a variety of physiological and pathological stimuli. Studies performed over the past 10 years have demonstrated that proteases play critical roles in initiation and execution of this process. The caspases, a family of cysteine-dependent aspartate-directed proteases, are prominent among the death proteases. Caspases are synthesized as relatively inactive zymogens that become activated by scaffold-mediated transactivation or by cleavage via upstream proteases in an intracellular cascade. Regulation of caspase activation and activity occurs at several different levels: ( a) Zymogen gene transcription is regulated; ( b) antiapoptotic members of the Bcl-2 family and other cellular polypeptides block proximity-induced activation of certain procaspases; and ( c) certain cellular inhibitor of apoptosis proteins (cIAPs) can bind to and inhibit active caspases. Once activated, caspases cleave a variety of intracellular polypeptides, including major structural elements of the cytoplasm and nucleus, components of the DNA repair machinery, and a number of protein kinases. Collectively, these scissions disrupt survival pathways and disassemble important architectural components of the cell, contributing to the stereotypic morphological and biochemical changes that characterize apoptotic cell death.

2,685 citations

Journal ArticleDOI
TL;DR: This work has shown that apoptotic cell death is a genetically programmed, morphologically distinct form of cell death that can be triggered by a variety of physiological and pathological stimuli, and that proteases play critical roles in initiation and execution of this process.
Abstract: ▪ Abstract Apoptosis is a genetically programmed, morphologically distinct form of cell death that can be triggered by a variety of physiological and pathological stimuli. Studies performed over the past 10 years have demonstrated that proteases play critical roles in initiation and execution of this process. The caspases, a family of cysteine-dependent aspartate-directed proteases, are prominent among the death proteases. Caspases are synthesized as relatively inactive zymogens that become activated by scaffold-mediated transactivation or by cleavage via upstream proteases in an intracellular cascade. Regulation of caspase activation and activity occurs at several different levels: (a) Zymogen gene transcription is regulated; (b) antiapoptotic members of the Bcl-2 family and other cellular polypeptides block proximity-induced activation of certain procaspases; and (c) certain cellular inhibitor of apoptosis proteins (cIAPs) can bind to and inhibit active caspases. Once activated, caspases cleave a variet...

2,636 citations

Journal ArticleDOI
TL;DR: This review focuses on the two most well-studied pathways of caspase activation: the cell surface death receptor pathway and the mitochondria-initiated pathway.
Abstract: ▪ Abstract Caspase activation plays a central role in the execution of apoptosis. The key components of the biochemical pathways of caspase activation have been recently elucidated. In this review, we focus on the two most well-studied pathways of caspase activation: the cell surface death receptor pathway and the mitochondria-initiated pathway. In the cell surface death receptor pathway, activation of caspase-8 following its recruitment to the death-inducing signaling complex (DISC) is the critical event that transmits the death signal. This event is regulated at several different levels by various viral and mammalian proteins. Activated caspase-8 can activate downstream caspases by direct cleavage or indirectly by cleaving Bid and inducing cytochrome c release from the mitochondria. In the mitochondrial-initiated pathway, caspase activation is triggered by the formation of a multimeric Apaf-1/cytochrome c complex that is fully functional in recruiting and activating procaspase-9. Activated caspase-9 wil...

2,579 citations

Journal ArticleDOI
TL;DR: A functional classification of cell death subroutines is proposed that applies to both in vitro and in vivo settings and includes extrinsic apoptosis, caspase-dependent or -independent intrinsic programmed cell death, regulated necrosis, autophagic cell death and mitotic catastrophe.
Abstract: In 2009, the Nomenclature Committee on Cell Death (NCCD) proposed a set of recommendations for the definition of distinct cell death morphologies and for the appropriate use of cell death-related terminology, including 'apoptosis', 'necrosis' and 'mitotic catastrophe'. In view of the substantial progress in the biochemical and genetic exploration of cell death, time has come to switch from morphological to molecular definitions of cell death modalities. Here we propose a functional classification of cell death subroutines that applies to both in vitro and in vivo settings and includes extrinsic apoptosis, caspase-dependent or -independent intrinsic apoptosis, regulated necrosis, autophagic cell death and mitotic catastrophe. Moreover, we discuss the utility of expressions indicating additional cell death modalities. On the basis of the new, revised NCCD classification, cell death subroutines are defined by a series of precise, measurable biochemical features.

2,238 citations

Journal ArticleDOI
TL;DR: Dysregulation of caspases underlies human diseases including cancer and inflammatory disorders, and major efforts to design better therapies for these diseases seek to understand how these enzymes work and how they can be controlled.
Abstract: Caspases are a family of endoproteases that provide critical links in cell regulatory networks controlling inflammation and cell death. The activation of these enzymes is tightly controlled by their production as inactive zymogens that gain catalytic activity following signaling events promoting their aggregation into dimers or macromolecular complexes. Activation of apoptotic caspases results in inactivation or activation of substrates, and the generation of a cascade of signaling events permitting the controlled demolition of cellular components. Activation of inflammatory caspases results in the production of active proinflammatory cytokines and the promotion of innate immune responses to various internal and external insults. Dysregulation of caspases underlies human diseases including cancer and inflammatory disorders, and major efforts to design better therapies for these diseases seek to understand how these enzymes work and how they can be controlled.

2,127 citations