scispace - formally typeset
Search or ask a question
Author

Andrea Ranzi

Bio: Andrea Ranzi is an academic researcher from ARPA-E. The author has contributed to research in topics: Population & Environmental exposure. The author has an hindex of 42, co-authored 101 publications receiving 8090 citations. Previous affiliations of Andrea Ranzi include University of Modena and Reggio Emilia.


Papers
More filters
Journal ArticleDOI
TL;DR: The meta-analyses showed a statistically significant association between risk for lung cancer and PM10 and PM2·5, and no association between lungcancer and nitrogen oxides concentration or traffic intensity on the nearest street.
Abstract: Summary Background Ambient air pollution is suspected to cause lung cancer. We aimed to assess the association between long-term exposure to ambient air pollution and lung cancer incidence in European populations. Methods This prospective analysis of data obtained by the European Study of Cohorts for Air Pollution Eff ects used data from 17 cohort studies based in nine European countries. Baseline addresses were geocoded and we assessed air pollution by land-use regression models for particulate matter (PM) with diameter of less than 10 μm (PM10), less than 2·5 μm (PM2·5), and between 2·5 and 10 μm (PMcoarse), soot (PM2·5absorbance), nitrogen oxides, and two traffi c indicators. We used Cox regression models with adjustment for potential confounders for cohort-specifi c analyses and random eff ects models for meta-analyses. Findings The 312 944 cohort members contributed 4 013 131 person-years at risk. During follow-up (mean 12·8 years), 2095 incident lung cancer cases were diagnosed. The meta-analyses showed a statistically signifi cant association between risk for lung cancer and PM10 (hazard ratio [HR] 1·22 [95% CI 1·03–1·45] per 10 μg/m³). For PM2·5 the HR was 1·18 (0·96–1·46) per 5 μg/m³. The same increments of PM10 and PM2·5 were associated with HRs for adenocarcinomas of the lung of 1·51 (1·10–2·08) and 1·55 (1·05–2·29), respectively. An increase in road traffi c of 4000 vehicle-km per day within 100 m of the residence was associated with an HR for lung cancer of 1·09 (0·99–1·21). The results showed no association between lung cancer and nitrogen oxides concentration (HR 1·01 [0·95–1·07] per 20 μg/m³) or traffi c intensity on the nearest street (HR 1·00 [0·97–1·04] per 5000 vehicles per day).

1,257 citations

Journal ArticleDOI
Rob Beelen1, Ole Raaschou-Nielsen, Massimo Stafoggia, Zorana Jovanovic Andersen2, Gudrun Weinmayr3, Gudrun Weinmayr4, Barbara Hoffmann3, Kathrin Wolf, Evangelia Samoli5, Paul Fischer, Mark J. Nieuwenhuijsen, Paolo Vineis6, Wei W. Xun7, Wei W. Xun6, Klea Katsouyanni5, Konstantina Dimakopoulou5, Anna Oudin8, Bertil Forsberg8, Lars Modig8, Aki S. Havulinna9, Timo Lanki9, Anu W. Turunen9, Bente Oftedal10, Wenche Nystad10, Per Nafstad10, Per Nafstad11, Ulf de Faire12, Nancy L. Pedersen12, Claes-Göran Östenson12, Laura Fratiglioni12, Johanna Penell12, Michal Korek12, Göran Pershagen12, Kirsten Thorup Eriksen, Kim Overvad13, Thomas Ellermann13, Marloes Eeftens1, Petra H.M. Peeters6, Petra H.M. Peeters14, Kees Meliefste1, Meng Wang1, Bas Bueno-de-Mesquita, Dorothea Sugiri3, Ursula Krämer3, Joachim Heinrich, Kees de Hoogh6, Timothy J. Key15, Annette Peters, Regina Hampel, Hans Concin, Gabriele Nagel4, Alex Ineichen16, Alex Ineichen17, Emmanuel Schaffner17, Emmanuel Schaffner16, Nicole Probst-Hensch16, Nicole Probst-Hensch17, Nino Künzli16, Nino Künzli17, Christian Schindler17, Christian Schindler16, Tamara Schikowski16, Tamara Schikowski17, Martin Adam16, Martin Adam17, Harish C. Phuleria17, Harish C. Phuleria16, Alice Vilier18, Alice Vilier19, Françoise Clavel-Chapelon19, Françoise Clavel-Chapelon18, Christophe Declercq, Sara Grioni, Vittorio Krogh, Ming-Yi Tsai17, Ming-Yi Tsai20, Ming-Yi Tsai16, Fulvio Ricceri, Carlotta Sacerdote21, C Galassi21, Enrica Migliore21, Andrea Ranzi, Giulia Cesaroni, Chiara Badaloni, Francesco Forastiere, Ibon Tamayo22, Pilar Amiano22, Miren Dorronsoro22, Michail Katsoulis, Antonia Trichopoulou, Bert Brunekreef14, Bert Brunekreef1, Gerard Hoek1 
TL;DR: In this article, the authors investigated the association between natural-cause mortality and long-term exposure to several air pollutants, such as PM2.5, nitrogen oxides, and NOx.

1,056 citations

Journal ArticleDOI
TL;DR: Careful selection of monitoring sites, examination of influential observations and skewed variable distributions were essential for developing stable LUR models, which are used to estimate air pollution concentrations at the home addresses of participants in the health studies involved in ESCAPE.
Abstract: Land Use Regression (LUR) models have been used increasingly for modeling small-scale spatial variation in air pollution concentrations and estimating individual exposure for participants of cohort studies. Within the ESCAPE project, concentrations of PM(2.5), PM(2.5) absorbance, PM(10), and PM(coarse) were measured in 20 European study areas at 20 sites per area. GIS-derived predictor variables (e.g., traffic intensity, population, and land-use) were evaluated to model spatial variation of annual average concentrations for each study area. The median model explained variance (R(2)) was 71% for PM(2.5) (range across study areas 35-94%). Model R(2) was higher for PM(2.5) absorbance (median 89%, range 56-97%) and lower for PM(coarse) (median 68%, range 32- 81%). Models included between two and five predictor variables, with various traffic indicators as the most common predictors. Lower R(2) was related to small concentration variability or limited availability of predictor variables, especially traffic intensity. Cross validation R(2) results were on average 8-11% lower than model R(2). Careful selection of monitoring sites, examination of influential observations and skewed variable distributions were essential for developing stable LUR models. The final LUR models are used to estimate air pollution concentrations at the home addresses of participants in the health studies involved in ESCAPE.

861 citations

Journal ArticleDOI
TL;DR: In this article, the authors estimate within-city variability in air pollution concentrations using Land Use Regression (LUR) models and show that LUR models are able to explain small-scale within city variations.

758 citations

Journal ArticleDOI
21 Jan 2014-BMJ
TL;DR: Long term exposure to particulate matter is associated with incidence of coronary events, and this association persists at levels of exposure below the current European limit values.
Abstract: OBJECTIVES: To study the effect of long term exposure to airborne pollutants on the incidence of acute coronary events in 11 cohorts participating in the European Study of Cohorts for Air Pollution Effects (ESCAPE). DESIGN: Prospective cohort studies and meta-analysis of the results. SETTING: Cohorts in Finland, Sweden, Denmark, Germany, and Italy. PARTICIPANTS: 100 166 people were enrolled from 1997 to 2007 and followed for an average of 11.5 years. Participants were free from previous coronary events at baseline. MAIN OUTCOME MEASURES: Modelled concentrations of particulate matter <2.5 μm (PM2.5), 2.5-10 μm (PMcoarse), and <10 μm (PM10) in aerodynamic diameter, soot (PM2.5 absorbance), nitrogen oxides, and traffic exposure at the home address based on measurements of air pollution conducted in 2008-12. Cohort specific hazard ratios for incidence of acute coronary events (myocardial infarction and unstable angina) per fixed increments of the pollutants with adjustment for sociodemographic and lifestyle risk factors, and pooled random effects meta-analytic hazard ratios. RESULTS: 5157 participants experienced incident events. A 5 μg/m(3) increase in estimated annual mean PM2.5 was associated with a 13% increased risk of coronary events (hazard ratio 1.13, 95% confidence interval 0.98 to 1.30), and a 10 μg/m(3) increase in estimated annual mean PM10 was associated with a 12% increased risk of coronary events (1.12, 1.01 to 1.25) with no evidence of heterogeneity between cohorts. Positive associations were detected below the current annual European limit value of 25 μg/m(3) for PM2.5 (1.18, 1.01 to 1.39, for 5 μg/m(3) increase in PM2.5) and below 40 μg/m(3) for PM10 (1.12, 1.00 to 1.27, for 10 μg/m(3) increase in PM10). Positive but non-significant associations were found with other pollutants. CONCLUSIONS: Long term exposure to particulate matter is associated with incidence of coronary events, and this association persists at levels of exposure below the current European limit values.

525 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The 11th edition of Harrison's Principles of Internal Medicine welcomes Anthony Fauci to its editorial staff, in addition to more than 85 new contributors.
Abstract: The 11th edition of Harrison's Principles of Internal Medicine welcomes Anthony Fauci to its editorial staff, in addition to more than 85 new contributors. While the organization of the book is similar to previous editions, major emphasis has been placed on disorders that affect multiple organ systems. Important advances in genetics, immunology, and oncology are emphasized. Many chapters of the book have been rewritten and describe major advances in internal medicine. Subjects that received only a paragraph or two of attention in previous editions are now covered in entire chapters. Among the chapters that have been extensively revised are the chapters on infections in the compromised host, on skin rashes in infections, on many of the viral infections, including cytomegalovirus and Epstein-Barr virus, on sexually transmitted diseases, on diabetes mellitus, on disorders of bone and mineral metabolism, and on lymphadenopathy and splenomegaly. The major revisions in these chapters and many

6,968 citations

Journal ArticleDOI
17 Sep 2015-Nature
TL;DR: It is found that emissions from residential energy use such as heating and cooking, prevalent in India and China, have the largest impact on premature mortality globally, being even more dominant if carbonaceous particles are assumed to be most toxic.
Abstract: Assessment of the global burden of disease is based on epidemiological cohort studies that connect premature mortality to a wide range of causes, including the long-term health impacts of ozone and fine particulate matter with a diameter smaller than 2.5 micrometres (PM2.5). It has proved difficult to quantify premature mortality related to air pollution, notably in regions where air quality is not monitored, and also because the toxicity of particles from various sources may vary. Here we use a global atmospheric chemistry model to investigate the link between premature mortality and seven emission source categories in urban and rural environments. In accord with the global burden of disease for 2010 (ref. 5), we calculate that outdoor air pollution, mostly by PM2.5, leads to 3.3 (95 per cent confidence interval 1.61-4.81) million premature deaths per year worldwide, predominantly in Asia. We primarily assume that all particles are equally toxic, but also include a sensitivity study that accounts for differential toxicity. We find that emissions from residential energy use such as heating and cooking, prevalent in India and China, have the largest impact on premature mortality globally, being even more dominant if carbonaceous particles are assumed to be most toxic. Whereas in much of the USA and in a few other countries emissions from traffic and power generation are important, in eastern USA, Europe, Russia and East Asia agricultural emissions make the largest relative contribution to PM2.5, with the estimate of overall health impact depending on assumptions regarding particle toxicity. Model projections based on a business-as-usual emission scenario indicate that the contribution of outdoor air pollution to premature mortality could double by 2050.

3,848 citations

Journal ArticleDOI
TL;DR: This book is dedicated to the memory of those who have served in the armed forces and their families during the conflicts of the twentieth century.

2,628 citations

Journal ArticleDOI
TL;DR: PM2.5 exposure may be related to additional causes of death than the five considered by the GBD and that incorporation of risk information from other, nonoutdoor, particle sources leads to underestimation of disease burden, especially at higher concentrations.
Abstract: Exposure to ambient fine particulate matter (PM2.5) is a major global health concern. Quantitative estimates of attributable mortality are based on disease-specific hazard ratio models that incorporate risk information from multiple PM2.5 sources (outdoor and indoor air pollution from use of solid fuels and secondhand and active smoking), requiring assumptions about equivalent exposure and toxicity. We relax these contentious assumptions by constructing a PM2.5-mortality hazard ratio function based only on cohort studies of outdoor air pollution that covers the global exposure range. We modeled the shape of the association between PM2.5 and nonaccidental mortality using data from 41 cohorts from 16 countries-the Global Exposure Mortality Model (GEMM). We then constructed GEMMs for five specific causes of death examined by the global burden of disease (GBD). The GEMM predicts 8.9 million [95% confidence interval (CI): 7.5-10.3] deaths in 2015, a figure 30% larger than that predicted by the sum of deaths among the five specific causes (6.9; 95% CI: 4.9-8.5) and 120% larger than the risk function used in the GBD (4.0; 95% CI: 3.3-4.8). Differences between the GEMM and GBD risk functions are larger for a 20% reduction in concentrations, with the GEMM predicting 220% higher excess deaths. These results suggest that PM2.5 exposure may be related to additional causes of death than the five considered by the GBD and that incorporation of risk information from other, nonoutdoor, particle sources leads to underestimation of disease burden, especially at higher concentrations.

1,283 citations

Journal ArticleDOI
TL;DR: The meta-analyses showed a statistically significant association between risk for lung cancer and PM10 and PM2·5, and no association between lungcancer and nitrogen oxides concentration or traffic intensity on the nearest street.
Abstract: Summary Background Ambient air pollution is suspected to cause lung cancer. We aimed to assess the association between long-term exposure to ambient air pollution and lung cancer incidence in European populations. Methods This prospective analysis of data obtained by the European Study of Cohorts for Air Pollution Eff ects used data from 17 cohort studies based in nine European countries. Baseline addresses were geocoded and we assessed air pollution by land-use regression models for particulate matter (PM) with diameter of less than 10 μm (PM10), less than 2·5 μm (PM2·5), and between 2·5 and 10 μm (PMcoarse), soot (PM2·5absorbance), nitrogen oxides, and two traffi c indicators. We used Cox regression models with adjustment for potential confounders for cohort-specifi c analyses and random eff ects models for meta-analyses. Findings The 312 944 cohort members contributed 4 013 131 person-years at risk. During follow-up (mean 12·8 years), 2095 incident lung cancer cases were diagnosed. The meta-analyses showed a statistically signifi cant association between risk for lung cancer and PM10 (hazard ratio [HR] 1·22 [95% CI 1·03–1·45] per 10 μg/m³). For PM2·5 the HR was 1·18 (0·96–1·46) per 5 μg/m³. The same increments of PM10 and PM2·5 were associated with HRs for adenocarcinomas of the lung of 1·51 (1·10–2·08) and 1·55 (1·05–2·29), respectively. An increase in road traffi c of 4000 vehicle-km per day within 100 m of the residence was associated with an HR for lung cancer of 1·09 (0·99–1·21). The results showed no association between lung cancer and nitrogen oxides concentration (HR 1·01 [0·95–1·07] per 20 μg/m³) or traffi c intensity on the nearest street (HR 1·00 [0·97–1·04] per 5000 vehicles per day).

1,257 citations