scispace - formally typeset
Search or ask a question
Author

Andreas Bergmaier

Bio: Andreas Bergmaier is an academic researcher from Bundeswehr University Munich. The author has contributed to research in topics: Elastic recoil detection & Diamond. The author has an hindex of 26, co-authored 110 publications receiving 2968 citations. Previous affiliations of Andreas Bergmaier include Technische Universität München.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, an aliquot of highly enriched 10 Be master solution was serially diluted with increasing well-known masses of 9 Be and the specific activity was measured by means of accurate liquid scintillation counting (LSC).
Abstract: The importance of 10 Be in different applications of accelerator mass spectrometry (AMS) is well-known. In this context the half-life of 10 Be has a crucial impact, and an accurate and precise determination of the half-life is a prerequisite for many of the applications of 10 Be in cosmic-ray and earth science research. Recently, the value of the 10 Be half-life has been the centre of much debate. In order to overcome uncertainties inherent in previous determinations, we introduced a new method of high accuracy and precision. An aliquot of our highly enriched 10 Be master solution was serially diluted with increasing well-known masses of 9 Be. We then determined the initial 10 Be concentration by least square fit to the series of measurements of the resultant 10 Be/ 9 Be ratio. In order to minimize uncertainties because of mass bias which plague other low-energy mass spectrometric methods, we used for the first time Heavy-Ion Elastic Recoil Detection (HI-ERD) for the determination of the 10 Be/ 9 Be isotopic ratios, a technique which does not suffer from difficult to control mass fractionation. The specific activity of the master solution was measured by means of accurate liquid scintillation counting (LSC). The resultant combination of the 10 Be concentration and activity yields a 10 Be half-life of T 1/2 = 1.388 ± 0.018 (1 s, 1.30%) Ma. In a parallel but independent study (Chmeleff et al. [11] ), found a value of 1.386 ± 0.016 (1.15%) Ma. Our recommended weighted mean and mean standard error for the new value for 10 Be half-life based on these two independent measurements is 1.387 ± 0.012 (0.87%) Ma.

797 citations

Journal ArticleDOI
TL;DR: In this article, the exact Al mole fraction and the biaxial strain of the alloys can be calculated by an additional determination of a, using asymmetric reflections, and the results obtained by x-ray diffraction and elastic recoil detection provide evidence for the validity of Vegard's law in the AlGaN system.
Abstract: AlxGa1−xN alloys were grown on c-plane sapphire by plasma-induced molecular beam epitaxy. The Al content x was varied over the whole composition range (0⩽x⩽1). The molar Al fraction was deduced from x-ray diffraction and for comparison by elastic recoil detection analysis. The composition of the alloys calculated from the lattice parameter c underestimates x. This is due to a deformation of the unit cell. The exact Al mole fraction and the biaxial strain of the alloys can be calculated by an additional determination of a, using asymmetric reflections. The results obtained by x-ray diffraction and elastic recoil detection provide evidence for the validity of Vegard’s law in the AlGaN system. In addition, the deviation of the band gap from a linear dependence on x was investigated. We found a downward bowing with a bowing parameter b=1.3 eV.

290 citations

Journal ArticleDOI
TL;DR: In this paper, the thermal stability of thin films of Group III nitrides prepared by low-pressure chemical vapor deposition from organometallic precursors was investigated by elastic recoil detection analysis (ERDA).
Abstract: We present results on the thermal stability as well as the thermally induced hydrogen, hydrocarbon, and nitrogen–hydrogen effusion from thin films of Group III nitrides prepared by low‐pressure chemical vapor deposition from organometallic precursors. We have deposited amorphous, polycrystalline, and epitaxial InN, GaN, and AIN films on (0001) Al2O3 substrates using the chemical reaction of azido[bis(3‐dimethylamino)propyl]indium, triethylgallium, and tritertiarybutylaluminium with ammonia. The substrate temperature was varied between 400 °C and 1100 °C. The elemental composition, in particular its dependence on the growth temperature, was investigated by elastic recoil detection analysis (ERDA). The influence of growth rate and crystallite size on the concentration of surface adsorbed hydrocarbons and carbon oxides is determined by a combination of ERDA and thermal desorption measurements. In addition, the stability of and the nitrogen flux from the InN, GaN, and AIN surfaces was determined by x‐ray diffraction and thermal decomposition experiments.

276 citations

Journal ArticleDOI
TL;DR: In this article, the boron δ-doped p-channel FET and the hydrogen induced p-type surface-channel-FET were investigated and the results obtained with this FET concept yielded a VDmax>200 V (LG = 1 μm) and a IDmax>360 mA/mm a fT=11.5 GHz and fmaxU>40 GHz (LG=0.2 μm).

103 citations

Journal ArticleDOI
TL;DR: In this article, the structural properties of these films were investigated by time-of-flight secondary-ion-mass-spectroscopy (ToF-SIMS), X-ray photoelectron spectroscopy, and elastic recoil detection (ERD).

79 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors investigated the role of spontaneous and piezoelectric polarization on the carrier confinement at GaN/AlGaN and AlGaN/GaN interfaces.
Abstract: Carrier concentration profiles of two-dimensional electron gases are investigated in wurtzite, Ga-face AlxGa1−xN/GaN/AlxGa1−xN and N-face GaN/AlxGa1−xN/GaN heterostructures used for the fabrication of field effect transistors. Analysis of the measured electron distributions in heterostructures with AlGaN barrier layers of different Al concentrations (0.15

2,581 citations

Journal ArticleDOI
TL;DR: In this paper, the surface chemistry of the trimethylaluminum/water ALD process is reviewed, with an aim to combine the information obtained in different types of investigations, such as growth experiments on flat substrates and reaction chemistry investigation on high-surface-area materials.
Abstract: Atomic layer deposition(ALD), a chemical vapor deposition technique based on sequential self-terminating gas–solid reactions, has for about four decades been applied for manufacturing conformal inorganic material layers with thickness down to the nanometer range. Despite the numerous successful applications of material growth by ALD, many physicochemical processes that control ALD growth are not yet sufficiently understood. To increase understanding of ALD processes, overviews are needed not only of the existing ALD processes and their applications, but also of the knowledge of the surface chemistry of specific ALD processes. This work aims to start the overviews on specific ALD processes by reviewing the experimental information available on the surface chemistry of the trimethylaluminum/water process. This process is generally known as a rather ideal ALD process, and plenty of information is available on its surface chemistry. This in-depth summary of the surface chemistry of one representative ALD process aims also to provide a view on the current status of understanding the surface chemistry of ALD, in general. The review starts by describing the basic characteristics of ALD, discussing the history of ALD—including the question who made the first ALD experiments—and giving an overview of the two-reactant ALD processes investigated to date. Second, the basic concepts related to the surface chemistry of ALD are described from a generic viewpoint applicable to all ALD processes based on compound reactants. This description includes physicochemical requirements for self-terminating reactions,reaction kinetics, typical chemisorption mechanisms, factors causing saturation, reasons for growth of less than a monolayer per cycle, effect of the temperature and number of cycles on the growth per cycle (GPC), and the growth mode. A comparison is made of three models available for estimating the sterically allowed value of GPC in ALD. Third, the experimental information on the surface chemistry in the trimethylaluminum/water ALD process are reviewed using the concepts developed in the second part of this review. The results are reviewed critically, with an aim to combine the information obtained in different types of investigations, such as growth experiments on flat substrates and reaction chemistry investigation on high-surface-area materials. Although the surface chemistry of the trimethylaluminum/water ALD process is rather well understood, systematic investigations of the reaction kinetics and the growth mode on different substrates are still missing. The last part of the review is devoted to discussing issues which may hamper surface chemistry investigations of ALD, such as problematic historical assumptions, nonstandard terminology, and the effect of experimental conditions on the surface chemistry of ALD. I hope that this review can help the newcomer get acquainted with the exciting and challenging field of surface chemistry of ALD and can serve as a useful guide for the specialist towards the fifth decade of ALD research.

2,212 citations

Journal ArticleDOI
TL;DR: In this paper, the structural and point defects caused by lattice and stacking mismatch with substrates are discussed. But even the best of the three binaries, InN, AIN and AIN as well as their ternary compounds, contain many structural defects, and these defects notably affect the electrical and optical properties of the host material.
Abstract: Gallium nitride (GaN) and its allied binaries InN and AIN as well as their ternary compounds have gained an unprecedented attention due to their wide-ranging applications encompassing green, blue, violet, and ultraviolet (UV) emitters and detectors (in photon ranges inaccessible by other semiconductors) and high-power amplifiers. However, even the best of the three binaries, GaN, contains many structural and point defects caused to a large extent by lattice and stacking mismatch with substrates. These defects notably affect the electrical and optical properties of the host material and can seriously degrade the performance and reliability of devices made based on these nitride semiconductors. Even though GaN broke the long-standing paradigm that high density of dislocations precludes acceptable device performance, point defects have taken the center stage as they exacerbate efforts to increase the efficiency of emitters, increase laser operation lifetime, and lead to anomalies in electronic devices. The p...

1,724 citations

Journal ArticleDOI
TL;DR: The role of extended and point defects, and key impurities such as C, O, and H, on the electrical and optical properties of GaN is reviewed in this article, along with the influence of process-induced or grown-in defects and impurities on the device physics.
Abstract: The role of extended and point defects, and key impurities such as C, O, and H, on the electrical and optical properties of GaN is reviewed. Recent progress in the development of high reliability contacts, thermal processing, dry and wet etching techniques, implantation doping and isolation, and gate insulator technology is detailed. Finally, the performance of GaN-based electronic and photonic devices such as field effect transistors, UV detectors, laser diodes, and light-emitting diodes is covered, along with the influence of process-induced or grown-in defects and impurities on the device physics.

1,693 citations

Journal ArticleDOI
TL;DR: In this paper, a combination of high resolution x-ray diffraction, atomic force microscopy, Hall effect, and capacitance-voltage profiling measurements is used to calculate the polarization induced sheet charge bound at the AlGaN/GaN interfaces.
Abstract: Two dimensional electron gases in Al x Ga 12x N/GaN based heterostructures, suitable for high electron mobility transistors, are induced by strong polarization effects. The sheet carrier concentration and the confinement of the two dimensional electron gases located close to the AlGaN/GaN interface are sensitive to a large number of different physical properties such as polarity, alloy composition, strain, thickness, and doping of the AlGaN barrier. We have investigated these physical properties for undoped and silicon doped transistor structures by a combination of high resolution x-ray diffraction, atomic force microscopy, Hall effect, and capacitance‐voltage profiling measurements. The polarization induced sheet charge bound at the AlGaN/GaN interfaces was calculated from different sets of piezoelectric constants available in the literature. The sheet carrier concentration induced by polarization charges was determined

1,439 citations