Author
Andreas D. Georgakarakos
Bio: Andreas D. Georgakarakos is an academic researcher from University of Sheffield. The author has contributed to research in topics: Smart grid & Energy storage. The author has an hindex of 2, co-authored 3 publications receiving 15 citations.
Topics: Smart grid, Energy storage, Grid, Electricity, Building automation
Papers
More filters
TL;DR: Initial results show that battery storage can be successfully used to change a building’s electricity profile and perform load-shifting (arbitrage) and peak-shaving while the excess electricity is exported back to grid to take advantage of the price difference and relieve pressure on the infrastructure.
Abstract: The building sector is responsible for a significant proportion of the consumed energy and the consequent carbon emissions. Currently, electricity and natural gas are the most popular fuels used in the UK Services sector and the industry. Furthermore, buildings constitute a key component of the power network, in both its current conventional form and its evolution, the smart grid. The smart grid is expected to integrate energy storage, distributed generation and buildings into the network. This paper introduces the concept of Smart Grid Optimised Buildings (SGOBs), recognising the importance of energy storage to establish a dynamic interaction between the building and the smart grid. SGOBs are expected to be fully electric, make the best use of the available resources and utilise their embedded battery storage systems to respond to notifications issued by the smart grid and to dynamic electricity prices. Assuming that buildings have access to the day-ahead electricity market, initial results show that battery storage can be successfully used to change a building’s electricity profile and perform load-shifting (arbitrage) and peak-shaving while the excess electricity is exported back to grid to take advantage of the price difference and relieve pressure on the infrastructure.
18 citations
TL;DR: This study investigates Smart Grid Optimised Buildings (SGOBs) which can respond to real-time electricity prices by utilising battery storage systems (BSS) and found the most energy-efficient building was capable of shifting a higher percentage of its peak loads and export more electricity, when this is allowed.
Abstract: This study investigates Smart Grid Optimised Buildings (SGOBs) which can respond to real-time electricity prices by utilising battery storage systems (BSS). Different building design characteristics are assessed to evaluate the impact on energy use, the interaction with the battery, and potential for peak load shifting. Two extreme cases based on minimum and maximum annual energy consumption were selected for further investigation to assess their capability of utilising BSS to perform arbitrage, under real-time pricing. Three operational dispatch strategies were modelled to allow buildings to provide such services. The most energy-efficient building was capable of shifting a higher percentage of its peak loads and export more electricity, when this is allowed. When using the biggest battery (220 kWh) to only meet the building loads, the energy-efficient building was able to shift 39.68% of its original peak loads in comparison to the 33.95% of the least efficient building. With exports allowed, the shifting percentages went down to 31.76% and 29.46%, respectively, while exports of 18.08 and 16.34 kWh/m2 took place. The formation of a regulatory framework is vital in order to establish proper motives for buildings to undertake an active role in the smart grid.
3 citations
01 Nov 2017
TL;DR: This paper is the first to present the concept and the philosophy on which SGOBs are based, along with initial results, demonstrating how a building can adjust its loads to reduce stress on the grid.
Abstract: Smart Grid Optimised Building (SGOB) can be thought of as meeting its service obligations to its occupants and minimising its operational cost and footprint to its owner while actively engaging with the electricity provider, enabling in this way the best use of the available resources. SGOBs differ from Smart Buildings, regarding their aim and objectives, as their design and energy systems are optimised for the needs of the Smart Grid. Conceptually, they must have an active interaction with the energy network through responses to dynamic electricity prices and carbon emissions, similarly to Active Buildings. Instead of being considered as a passive element of the energy equation like conventional buildings, SGOBs follow an original and innovative approach and have the capacity to transform to prosumers, with the deployment of on-site renewable energy sources and by participating in a 2-direction power exchange with the Network Operator. The current literature and research have followed an ad-hoc approach by focusing on conventional strategies on existing buildings, such as increasing the building energy efficiency or reducing the current energy loads. On the other hand, SGOBs are expected to consist of several optimised design elements, including thermal mass, shape, orientation, insulation and glazing. Furthermore, SGOBs can meet their energy loads with electricity, either directly from the grid or using their incorporated energy storage systems e.g. batteries. Electricity can be stored at times of low demand when the electricity tariffs are cheaper, and used on the following day to cover part of the peak load. Another possibility includes the load-levelling service, where the building is notified by the Network Operator to maintain its consumption below a power limit for a specific time period. This paper is the first to present the concept and the philosophy on which SGOBs are based, along with initial results, demonstrating how a building can adjust its loads to reduce stress on the grid.
2 citations
Cited by
More filters
TL;DR: The modified Hummers method can not only destroy the longitudinal molecular bonds between graphite layers, but also splice them horizontally to form 2D GO, which is verified by high-resolution transmission electron microscope (HR-TEM) images.
Abstract: The graphite electrodes of spent lithium-ion batteries (LIBs) have a good crystalline composition and layered structure, and the recovery potential is promising. However, the internal and external surfaces of the waste graphite are often polluted with various organic and inorganic impurities, which seriously restrict its high-value utilization. Herein, the microstructure and surface analysis of waste graphite at variable scales were carried out systematically to reveal the types and occurrence status of impurities and their influence on the preparation of graphene oxide (GO) using a modified Hummers method. The results show that the graphite surface contaminants are polyvinylidene fluoride binder, LiPF6 electrolyte and LiF residue from the solid electrolyte interface, while residual lithium (Li2CO3) and CuO were found to have invaded the crystal structure of graphite. Fortunately, the modified Hummers method can effectively remove these complicated associated impurities and prevent their re-contamination on the GO surface. More importantly, the modified Hummers method can not only destroy the longitudinal molecular bonds between graphite layers, but also splice them horizontally to form 2D GO, which is verified by high-resolution transmission electron microscope (HR-TEM) images. This paper provides theoretical support and practical guidance for the high-value utilization of waste graphite in spent LIBs.
69 citations
TL;DR: In this article, the extent of energy resilience achieved in a socially-deprived community in Oxford, through deployment of solar photovoltaic (PV) systems and smart batteries (internet enabled and controllable) across a cluster of 82 dwellings (households).
Abstract: This paper empirically evaluates the extent of energy resilience achieved in a socially-deprived community in Oxford, through deployment of solar photovoltaic (PV) systems and smart batteries (internet enabled and controllable) across a cluster of 82 dwellings (households). The methodological approach comprised dwelling and household surveys, along with high frequency monitoring of household electricity consumption, solar PV generation, battery charge and discharge data. In the monitored households, average daily electricity consumption was found to be positively related with dwelling size, number of occupants and number of appliances used. Although 117 MWh of PV electricity was generated within a year across 74 dwellings, peak generation did not match peak consumption, demonstrating the need for battery storage. Home batteries were found to increase self-consumption of PV electricity and offset grid demand through discharge of stored PV electricity marginally at an average of 6%, depending on the size of the PV system, surplus PV electricity available and size of the battery. Aggregating solar generation and storage at a community level showed that peak grid electricity demand between 17:00 and 19:00 was reduced by 8% through the use of smart batteries across 74 dwellings. In future, a local energy sharing scheme could be developed, wherein not all dwellings would need to have solar PV systems, but rather have internet enabled batteries that could be monitored and controlled virtually.
39 citations
TL;DR: In this article, a methodology for a simplified quantitative assessment of the load shifting potential of buildings is presented, which allows buildings to be categorized based on their energy storage capacity, load shifting capacity, and their subsequent interaction with the grid.
Abstract: With the third revision of the Energy Performance of Buildings Directive (EPBD) issued in July 2018, the assessment of buildings now has to include a Smart Readiness Indicator (SRI) to consider the fact that buildings must play an active role within the context of an intelligent energy system. In order to support the development of the SRI, this article describes a methodology for a simplified quantitative assessment of the load shifting potential of buildings. The aim of the methodology is to provide a numerical, model-based approach, which allows buildings to be categorized based on their energy storage capacity, load shifting potential and their subsequent interaction with the grid. A key aspect is the applicability within the Energy Performance Certificate (EPC) in order to provide an easy to use calculation, which is applied in addition to the already established energy efficiency, building services and renewable energy assessments. The developed methodology is being applied to theoretical use cases to validate the approach. The results show that a simplified model can provide an adequate framework for a quantitative assessment for the Smart Readiness Indicator.
31 citations
TL;DR: In this article, the authors identify multiple case opportunities for different power system stakeholders in Croatia, models potential BESS applications using real-world case studies, analyzes feasibility of these investments, and discusses financial returns and barriers to overcome.
Abstract: Battery energy storage systems (BESS) and renewable energy sources are complementary technologies from the power system viewpoint, where renewable energy sources behave as flexibility sinks and create business opportunities for BESS as flexibility sources. Various stakeholders can use BESS to balance, stabilize and flatten demand/generation patterns. These applications depend on the stakeholder role, flexibility service needed from the battery, market opportunities and obstacles, as well as regulatory aspects encouraging or hindering integration of storage technologies. While developed countries are quickly removing barriers and increasing the integration share of BESS, this is seldom the case in developing countries. The paper identifies multiple case opportunities for different power system stakeholders in Croatia, models potential BESS applications using real-world case studies, analyzes feasibility of these investments, and discusses financial returns and barriers to overcome.
19 citations
TL;DR: Initial results show that battery storage can be successfully used to change a building’s electricity profile and perform load-shifting (arbitrage) and peak-shaving while the excess electricity is exported back to grid to take advantage of the price difference and relieve pressure on the infrastructure.
Abstract: The building sector is responsible for a significant proportion of the consumed energy and the consequent carbon emissions. Currently, electricity and natural gas are the most popular fuels used in the UK Services sector and the industry. Furthermore, buildings constitute a key component of the power network, in both its current conventional form and its evolution, the smart grid. The smart grid is expected to integrate energy storage, distributed generation and buildings into the network. This paper introduces the concept of Smart Grid Optimised Buildings (SGOBs), recognising the importance of energy storage to establish a dynamic interaction between the building and the smart grid. SGOBs are expected to be fully electric, make the best use of the available resources and utilise their embedded battery storage systems to respond to notifications issued by the smart grid and to dynamic electricity prices. Assuming that buildings have access to the day-ahead electricity market, initial results show that battery storage can be successfully used to change a building’s electricity profile and perform load-shifting (arbitrage) and peak-shaving while the excess electricity is exported back to grid to take advantage of the price difference and relieve pressure on the infrastructure.
18 citations