scispace - formally typeset
Search or ask a question
Author

Andreas Hemp

Other affiliations: University of Potsdam
Bio: Andreas Hemp is an academic researcher from University of Bayreuth. The author has contributed to research in topics: Biodiversity & Species richness. The author has an hindex of 34, co-authored 156 publications receiving 5922 citations. Previous affiliations of Andreas Hemp include University of Potsdam.


Papers
More filters
Journal ArticleDOI
TL;DR: The Biodiversity Exploratories (www.biodiversityexploratories.de ) as mentioned in this paper is a large-scale and long-term project for functional biodiversity, which includes a hierarchical set of standardized field plots in three different regions of Germany covering manifold management types and intensities in grasslands and forests.

654 citations

Journal ArticleDOI
10 Sep 2015-Nature
TL;DR: This map reveals that the global number of trees is approximately 3.04 trillion, an order of magnitude higher than the previous estimate, and the globalNumber of trees has fallen by approximately 46% since the start of human civilization.
Abstract: The global extent and distribution of forest trees is central to our understanding of the terrestrial biosphere. We provide the first spatially continuous map of forest tree density at a global scale. This map reveals that the global number of trees is approximately 3.04 trillion, an order of magnitude higher than the previous estimate. Of these trees, approximately 1.39 trillion exist in tropical and subtropical forests, with 0.74 trillion in boreal regions and 0.61 trillion in temperate regions. Biome-level trends in tree density demonstrate the importance of climate and topography in controlling local tree densities at finer scales, as well as the overwhelming effect of humans across most of the world. Based on our projected tree densities, we estimate that over 15 billion trees are cut down each year, and the global number of trees has fallen by approximately 46% since the start of human civilization.

542 citations

Journal ArticleDOI
TL;DR: In this paper, the authors defined a compound, additive LUI index for managed grasslands including meadows and pastures, which summarizes the standardized intensity of three components of land use, namely fertilization, mowing, and livestock grazing at each site.

307 citations

Journal ArticleDOI
TL;DR: In this paper, the composition of the whole vascular forest plant flora with about 1220 species was studied in the forests of Mt. Kilimanjaro in East Africa with respect to altitudinal zonation and ecological factors.
Abstract: Based on the analysis of 600 vegetation plots using the method of Braun-Blanquet (1964) the composition of the whole vascular forest plant flora with about 1220 species was studied in the forests of Mt. Kilimanjaro. The altitudinal distribution of all strata (trees, shrubs, epiphytes, lianas and herbs) along a transect of 2400 m is discussed with respect to altitudinal zonation and ecological factors. With uni-dimensionally constraint clustering significant discontinuities were revealed that occurred simultaneously in the different strata. Thus even in structurally highly complex, multilayered tropical montane forests distinct community units exist that can be surveyed and classified by the Braun-Blanquet approach. This observed zonation was significantly correlated with altitude, temperature and soil acidity (pH); rainfall was of importance in particular for the zonation of epiphytes. Other key factors were humidity (influenced by stable cloud condensation belts) and minimum temperature (in particular the occurrence of frost at 2700 m altitude upslope). The contrary results of other transect studies in East Africa in respect to continuity of change in floristic composition appear to be caused by different sampling methods and intensities or mixing of data from areas with different climate conditions, whereas species richness did not influence the clarity of floristic discontinuities on Kilimanjaro and other parts of East Africa.

285 citations

Journal ArticleDOI
TL;DR: Edaphic properties, such as pH, organic carbon, total nitrogen, C/N ratio, phosphorus, nitrate, ammonium, soil moisture, soil temperature, and soil respiration, had an impact on community composition as assessed by fingerprinting, but interrelations with environmental parameters among subgroup terminal restriction fragments (T-RFs) differed significantly, e.g., different Gp1 T- RFs correlated positively or negatively with nitrogen content.
Abstract: In soil, Acidobacteria constitute on average 20% of all bacteria, are highly diverse, and are physiologically active in situ. However, their individual functions and interactions with higher taxa in soil are still unknown. Here, potential effects of land use, soil properties, plant diversity, and soil nanofauna on acidobacterial community composition were studied by cultivation-independent methods in grassland and forest soils from three different regions in Germany. The analysis of 16S rRNA gene clone libraries representing all studied soils revealed that grassland soils were dominated by subgroup Gp6 and forest soils by subgroup Gp1 Acidobacteria. The analysis of a large number of sites (n = 57) by 16S rRNA gene fingerprinting methods (terminal restriction fragment length polymorphism [T-RFLP] and denaturing gradient gel electrophoresis [DGGE]) showed that Acidobacteria diversities differed between grassland and forest soils but also among the three different regions. Edaphic properties, such as pH, organic carbon, total nitrogen, C/N ratio, phosphorus, nitrate, ammonium, soil moisture, soil temperature, and soil respiration, had an impact on community composition as assessed by fingerprinting. However, interrelations with environmental parameters among subgroup terminal restriction fragments (T-RFs) differed significantly, e.g., different Gp1 T-RFs correlated positively or negatively with nitrogen content. Novel significant correlations of Acidobacteria subpopulations (i.e., individual populations within subgroups) with soil nanofauna and vascular plant diversity were revealed only by analysis of clone sequences. Thus, for detecting novel interrelations of environmental parameters with Acidobacteria, individual populations within subgroups have to be considered.

275 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols used xiii 1.
Abstract: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols Used xiii 1. The Importance of Islands 3 2. Area and Number of Speicies 8 3. Further Explanations of the Area-Diversity Pattern 19 4. The Strategy of Colonization 68 5. Invasibility and the Variable Niche 94 6. Stepping Stones and Biotic Exchange 123 7. Evolutionary Changes Following Colonization 145 8. Prospect 181 Glossary 185 References 193 Index 201

14,171 citations

Journal ArticleDOI
TL;DR: Range-restricted species, particularly polar and mountaintop species, show severe range contractions and have been the first groups in which entire species have gone extinct due to recent climate change.
Abstract: Ecological changes in the phenology and distribution of plants and animals are occurring in all well-studied marine, freshwater, and terrestrial groups These observed changes are heavily biased in the directions predicted from global warming and have been linked to local or regional climate change through correlations between climate and biological variation, field and laboratory experiments, and physiological research Range-restricted species, particularly polar and mountaintop species, show severe range contractions and have been the first groups in which entire species have gone extinct due to recent climate change Tropical coral reefs and amphibians have been most negatively affected Predator-prey and plant-insect interactions have been disrupted when interacting species have responded differently to warming Evolutionary adaptations to warmer conditions have occurred in the interiors of species’ ranges, and resource use and dispersal have evolved rapidly at expanding range margins Observed genetic shifts modulate local effects of climate change, but there is little evidence that they will mitigate negative effects at the species level

7,657 citations

Book
01 Jun 2008
TL;DR: The Intergovernmental Panel on Climate Change (IPCC) Technical Paper Climate Change and Water draws together and evaluates the information in IPCC Assessment and Special Reports concerning the impacts of climate change on hydrological processes and regimes, and on freshwater resources.
Abstract: The Intergovernmental Panel on Climate Change (IPCC) Technical Paper Climate Change and Water draws together and evaluates the information in IPCC Assessment and Special Reports concerning the impacts of climate change on hydrological processes and regimes, and on freshwater resources – their availability, quality, use and management. It takes into account current and projected regional key vulnerabilities, prospects for adaptation, and the relationships between climate change mitigation and water. Its objectives are:

3,108 citations

30 Apr 1984
TL;DR: A review of the literature on optimal foraging can be found in this article, with a focus on the theoretical developments and the data that permit tests of the predictions, and the authors conclude that the simple models so far formulated are supported by available data and that they are optimistic about the value both now and in the future.
Abstract: Beginning with Emlen (1966) and MacArthur and Pianka (1966) and extending through the last ten years, several authors have sought to predict the foraging behavior of animals by means of mathematical models. These models are very similar,in that they all assume that the fitness of a foraging animal is a function of the efficiency of foraging measured in terms of some "currency" (Schoener, 1971) -usually energy- and that natural selection has resulted in animals that forage so as to maximize this fitness. As a result of these similarities, the models have become known as "optimal foraging models"; and the theory that embodies them, "optimal foraging theory." The situations to which optimal foraging theory has been applied, with the exception of a few recent studies, can be divided into the following four categories: (1) choice by an animal of which food types to eat (i.e., optimal diet); (2) choice of which patch type to feed in (i.e., optimal patch choice); (3) optimal allocation of time to different patches; and (4) optimal patterns and speed of movements. In this review we discuss each of these categories separately, dealing with both the theoretical developments and the data that permit tests of the predictions. The review is selective in the sense that we emphasize studies that either develop testable predictions or that attempt to test predictions in a precise quantitative manner. We also discuss what we see to be some of the future developments in the area of optimal foraging theory and how this theory can be related to other areas of biology. Our general conclusion is that the simple models so far formulated are supported are supported reasonably well by available data and that we are optimistic about the value both now and in the future of optimal foraging theory. We argue, however, that these simple models will requre much modification, espicially to deal with situations that either cannot easily be put into one or another of the above four categories or entail currencies more complicated that just energy.

2,709 citations

Journal ArticleDOI
TL;DR: There are two categories of environmental changes with altitude: those physically tied to meters above sea level, such as atmospheric pressure, temperature and clear-sky turbidity; and those that are not generally altitude specific, suchAs moisture, hours of sunshine, wind, season length, geology and even human land use.
Abstract: Altitudinal gradients are among the most powerful 'natural experiments' for testing ecological and evolutionary responses of biota to geophysical influences, such as low temperature. However, there are two categories of environmental changes with altitude: those physically tied to meters above sea level, such as atmospheric pressure, temperature and clear-sky turbidity; and those that are not generally altitude specific, such as moisture, hours of sunshine, wind, season length, geology and even human land use. The confounding of the first category by the latter has introduced confusion in the scientific literature on altitude phenomena.

2,130 citations