scispace - formally typeset
Search or ask a question
Author

Andreas Menzel

Bio: Andreas Menzel is an academic researcher from Technical University of Dortmund. The author has contributed to research in topics: Finite element method & Boundary value problem. The author has an hindex of 57, co-authored 397 publications receiving 12274 citations. Previous affiliations of Andreas Menzel include Kaiserslautern University of Technology & Lund University.


Papers
More filters
Journal ArticleDOI
18 Jul 2008-Science
TL;DR: A ptychographic imaging method is demonstrated that bridges the gap between CDI and STXM by measuring complete diffraction patterns at each point of a STXM scan.
Abstract: Coherent diffractive imaging (CDI) and scanning transmission x-ray microscopy (STXM) are two popular microscopy techniques that have evolved quite independently. CDI promises to reach resolutions below 10 nanometers, but the reconstruction procedures put stringent requirements on data quality and sample preparation. In contrast, STXM features straightforward data analysis, but its resolution is limited by the spot size on the specimen. We demonstrate a ptychographic imaging method that bridges the gap between CDI and STXM by measuring complete diffraction patterns at each point of a STXM scan. The high penetration power of x-rays in combination with the high spatial resolution will allow investigation of a wide range of complex mesoscopic life and material science specimens, such as embedded semiconductor devices or cellular networks.

1,164 citations

Journal ArticleDOI
23 Sep 2010-Nature
TL;DR: An X-ray computed tomography technique that generates quantitative high-contrast three-dimensional electron density maps from phase contrast information without reverting to assumptions of a weak phase object or negligible absorption is described.
Abstract: X-ray tomography is an invaluable tool in biomedical imaging. It can deliver the three-dimensional internal structure of entire organisms as well as that of single cells, and even gives access to quantitative information, crucially important both for medical applications and for basic research. Most frequently such information is based on X-ray attenuation. Phase contrast is sometimes used for improved visibility but remains significantly harder to quantify. Here we describe an X-ray computed tomography technique that generates quantitative high-contrast three-dimensional electron density maps from phase contrast information without reverting to assumptions of a weak phase object or negligible absorption. This method uses a ptychographic coherent imaging approach to record tomographic data sets, exploiting both the high penetration power of hard X-rays and the high sensitivity of lensless imaging. As an example, we present images of a bone sample in which structures on the 100 nm length scale such as the osteocyte lacunae and the interconnective canalicular network are clearly resolved. The recovered electron density map provides a contrast high enough to estimate nanoscale bone density variations of less than one per cent. We expect this high-resolution tomography technique to provide invaluable information for both the life and materials sciences.

823 citations

Journal ArticleDOI
TL;DR: A new reconstruction procedure that retrieves both the specimen's image and the illumination profile was recently demonstrated with hard X-ray data and is presented in greater details to illustrate its practical applicability with a visible light dataset.

616 citations

Journal ArticleDOI
07 Feb 2013-Nature
TL;DR: A general analytic approach to the characterization of diffractive imaging systems that can be described as low-rank mixed states is provided and some of the most stringent experimental conditions in ptychography can be relaxed, and susceptibility to imaging artefacts is reduced.
Abstract: Progress in imaging and metrology depends on exquisite control over and comprehensive characterization of wave fields. As reflected in its name, coherent diffractive imaging relies on high coherence when reconstructing highly resolved images from diffraction intensities alone without the need for image-forming lenses. Fully coherent light can be described adequately by a single pure state. Yet partial coherence and imperfect detection often need to be accounted for, requiring statistical optics or the superposition of states. Furthermore, the dynamics of samples are increasingly the very objectives of experiments. Here we provide a general analytic approach to the characterization of diffractive imaging systems that can be described as low-rank mixed states. We use experimental data and simulations to show how the reconstruction technique compensates for and characterizes various sources of decoherence quantitatively. Based on ptychography, the procedure is closely related to quantum state tomography and is equally applicable to high-resolution microscopy, wave sensing and fluctuation measurements. As a result, some of the most stringent experimental conditions in ptychography can be relaxed, and susceptibility to imaging artefacts is reduced. Furthermore, the method yields high-resolution images of mixed states within the sample, which may include quantum mixtures or fast stationary stochastic processes such as vibrations, switching or steady flows.

486 citations

Journal ArticleDOI
TL;DR: This corrects the article DOI: 10.1038/s data.2017.48 to S data.48.
Abstract: Scientific Data 4:170048 doi: 10.1038/sdata201748 (2017); Published 11 April 2017; Updated 24 October 2017. The Data Descriptor incorrectly states the number of normal incidences used to generate the plot in Fig. 4b as 209. This plot was generated from 32 normal incidence cases.

291 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal Article
TL;DR: This book by a teacher of statistics (as well as a consultant for "experimenters") is a comprehensive study of the philosophical background for the statistical design of experiment.
Abstract: THE DESIGN AND ANALYSIS OF EXPERIMENTS. By Oscar Kempthorne. New York, John Wiley and Sons, Inc., 1952. 631 pp. $8.50. This book by a teacher of statistics (as well as a consultant for \"experimenters\") is a comprehensive study of the philosophical background for the statistical design of experiment. It is necessary to have some facility with algebraic notation and manipulation to be able to use the volume intelligently. The problems are presented from the theoretical point of view, without such practical examples as would be helpful for those not acquainted with mathematics. The mathematical justification for the techniques is given. As a somewhat advanced treatment of the design and analysis of experiments, this volume will be interesting and helpful for many who approach statistics theoretically as well as practically. With emphasis on the \"why,\" and with description given broadly, the author relates the subject matter to the general theory of statistics and to the general problem of experimental inference. MARGARET J. ROBERTSON

13,333 citations

Journal ArticleDOI
10 Mar 1970

8,159 citations

Journal ArticleDOI
TL;DR: A review of the emerging research on additive manufacturing of metallic materials is provided in this article, which provides a comprehensive overview of the physical processes and the underlying science of metallurgical structure and properties of the deposited parts.

4,192 citations

Journal ArticleDOI
27 Sep 2013-Science
TL;DR: This study demonstrates the spontaneous intercalation of cations from aqueous salt solutions between two-dimensional (2D) Ti3C2 MXene layers, and provides a basis for exploring a large family of 2D carbides and carbonitrides in electrochemical energy storage applications using single- and multivalent ions.
Abstract: The intercalation of ions into layered compounds has long been exploited in energy storage devices such as batteries and electrochemical capacitors However, few host materials are known for ions much larger than lithium We demonstrate the spontaneous intercalation of cations from aqueous salt solutions between two-dimensional (2D) Ti3C2 MXene layers MXenes combine 2D conductive carbide layers with a hydrophilic, primarily hydroxyl-terminated surface A variety of cations, including Na+, K+, NH4+, Mg2+, and Al3+, can also be intercalated electrochemically, offering capacitance in excess of 300 farads per cubic centimeter (much higher than that of porous carbons) This study provides a basis for exploring a large family of 2D carbides and carbonitrides in electrochemical energy storage applications using single- and multivalent ions

3,018 citations