scispace - formally typeset
Search or ask a question
Author

Andreas Tribsch

Bio: Andreas Tribsch is an academic researcher from University of Salzburg. The author has contributed to research in topics: Population & Range (biology). The author has an hindex of 31, co-authored 69 publications receiving 4160 citations. Previous affiliations of Andreas Tribsch include University of Oslo & American Museum of Natural History.


Papers
More filters
Journal ArticleDOI
TL;DR: A comparison of the phylogeographic patterns with geological and palaeoenvironmental data demonstrates that glacial refugia were located along the southwestern, southern, eastern and northern border of the Alps, which implies that evolutionary or biogeographic processes induced by climatic fluctuations act on gene and species diversity in a similar way.
Abstract: Many mountain ranges have been strongly glaciated during the Quaternary ice ages, and the locations of glacial refugia of mountain plants have been debated for a long time. A series of detailed molecular studies, investigating intraspecific genetic variation of mountain plants in the European Alps, now allows for a first synopsis. A comparison of the phylogeographic patterns with geological and palaeoenvironmental data demonstrates that glacial refugia were located along the southwestern, southern, eastern and northern border of the Alps. Additional glacial refugia were present in central Alpine areas, where high-elevation plants survived the last glaciation on ice-free mountain tops. The observed intraspecific phylogeographies suggest general patterns of glacial survival, which conform to well-known centres of Alpine species diversity and endemism. This implies that evolutionary or biogeographic processes induced by climatic fluctuations act on gene and species diversity in a similar way.

803 citations

Journal ArticleDOI
01 Aug 2003-Taxon
TL;DR: Test hypotheses on Pleistocene refugia for mountain plants in the eastern part of the European Alps derived from palaeoenvironmental and geological results are tested, with new data on distributional patterns of vascular plant endemics and molecular phylogeographies of selected species.
Abstract: Climatic fluctuations during Quaternary glaciations had a significant influence on the distribution of taxa and on their intraspecific genetic structure. In this paper, we test hypotheses on Pleistocene refugia for mountain plants in the eastern part of the European Alps derived from palaeoenvironmental and geological results, with new data on distributional patterns of 288 vascular plant endemics and molecular phylogeographies of selected species. High numbers of endemics are found in calcareous regions at the southern and the eastern border of the Eastern Alps, which remained unglaciated during the Pleistocene. The distribution of local endemic taxa in general, and of silicicolous taxa in particular, shows a clear relationship with hypothetical glacial refugia in the southern, southeastern, easternmost, and northeastern Alps. Molecular phylogeographic data from several silicicolous alpine species ( Androsace alpina , Androsace wulfeniana , Eritrichium nanum , Phyteuma globulariifolium , Ranunculus glacialis , Saponaria pumila ) are not completely congruent. However, all genetically defined population groups are in congruence with hypothetical refugia. In general, results from distributions of endemic taxa and data from intraspecific phylogeography are compatible with previously hypothesized refugia suggesting that refugial situations have shaped the current patterns. The combination of patterns of endemism with molecular phylogeographic data provides an efficacious approach to reveal glacial refugia in vascular plants.

298 citations

Journal ArticleDOI
01 Aug 2005-Taxon
TL;DR: This study shows that deep phylogeographic splits resulting from old vicariance events can be concealed by presently contiguous distribution areas, and can be related to glacial refugia in peripheral areas of the Alps that were recognised in previous studies.
Abstract: Using Amplified Fragment Length Polymorphism (AFLP), we explored the intraspecific phylogeography of the alpine vascular plant Bupleurum stellatum (Apiaceae), disjunctly distributed in the Alps and Corsica. Within the Alps, the species’ distribution area is also not contiguous, spatially isolated groups of populations occuring in the Dolomites (Italy) and the Montafon (Austria). A main goal of our study was to explore the degree of differentiation of the isolated populations in Corsica, the Dolomites and the Montafon from the populations in the main distributional area and to test for hypotheses of vicariance or dispersal. We also sought a better general knowledge of glacial refugia of low alpine silicicolous plants. Phenetic as well as cladistic analyses of the AFLP multilocus phenotypes reveal a substantial north-south split through the contiguous distribution area of B. stellatum in the Alps. The resulting phylogeographic groups can be related to glacial refugia in peripheral areas of the Alps that were recognised in previous studies. The disjunct populations in Corsica, the Dolomites and the Montafon, however, are less strongly differentiated. For example, the Corsican population clustered with high bootstrap support with populations from the Eastern Alps, suggesting immigration to Corsica from that region. Our study shows that deep phylogeographic splits resulting from old vicariance events can be concealed by presently contiguous distribution areas. In contrast, disjunctions, if they are due to dispersal events, need not be accompanied by genetic divergence.

290 citations

Journal ArticleDOI
TL;DR: The relevance of particular ecological factors in shaping genetic patterns, which should be considered when modelling species projective distributions under climate change scenarios, are demonstrated.
Abstract: Climatic history and ecology are considered the most important factors moulding the spatial pattern of genetic diversity. With the advent of molecular markers, species historical fates have been widely explored. However, it has remained speculative what role ecological factors have played in shaping spatial genetic structures within species. With an unprecedented, dense large-scale sampling and genome-screening, we tested how ecological factors have influenced the spatial genetic structures in Alpine plants. Here, we show that species growing on similar substrate types, largely determined by the nature of bedrock, displayed highly congruent spatial genetic structures. As the heterogeneous and disjunctive distribution of bedrock types in the Alps, decisive for refugial survival during the ice ages, is temporally stable, concerted post-glacial migration routes emerged. Our multispecies study demonstrates the relevance of particular ecological factors in shaping genetic patterns, which should be considered when modelling species projective distributions under climate change scenarios.

187 citations

Journal ArticleDOI
TL;DR: The authors' results favour glacial survival in peripheral, unglaciated or not fully glaciated areas of P. globulariifolium within the Alps, which suggests high levels of gene‐flow over short to middle distances.
Abstract: Phyteuma globulariifolium is a high alpine plant species growing in the European Alps and the Pyrenees. In order to elucidate its glacial history, 325 individuals from 69 populations were analysed using the amplified fragment length polymorphism (AFLP) technique. A strongly hierarchical phylogeographical pattern was detected: Two major east - - west vicariant groups can be separated along a gap in the distributional area. A further subdivision into at least four populational groups is in congruence with presumed peripheral glacial refugia. There is no indication for survival on unglaciated mountain tops (nunataks) in the interior of the Pleistocene ice shield covering the Alps. Our results favour glacial survival in peripheral, unglaciated or not fully glaciated areas. Populations of P. globulariifolium in the Pyrenees are the result of relatively recent long-distance dispersal. Within the Alps, there is strong differentiation among groups of populations, whereas within them the differentiation is weak. This suggests high levels of gene-flow over short to middle distances.

178 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols used xiii 1.
Abstract: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols Used xiii 1. The Importance of Islands 3 2. Area and Number of Speicies 8 3. Further Explanations of the Area-Diversity Pattern 19 4. The Strategy of Colonization 68 5. Invasibility and the Variable Niche 94 6. Stepping Stones and Biotic Exchange 123 7. Evolutionary Changes Following Colonization 145 8. Prospect 181 Glossary 185 References 193 Index 201

14,171 citations

Journal ArticleDOI
TL;DR: DNA evidence indicates temperate species in Europe had different patterns of postglacial colonization across the same area and different ones in previous oscillations, whereas the northwest region of North America was colonized from the north, east and south.
Abstract: An appreciation of the scale and frequency of climatic oscillations in the past few million years is modifying our views on how evolution proceeds. Such major events caused extinction and repeated changes in the ranges of those taxa that survived. Their spatial effects depend on latitude and topography, with extensive extinction and recolonization in higher latitudes and altitudinal shifts and complex refugia nearer the tropics. The associated population dynamics varied with life history and geography, and the present genetic constitution of the populations and species carry attenuated signals of these past dynamics. Phylogeographic studies with DNA have burgeoned recently and studies are reviewed from the arctic, temperate and tropical regions, seeking commonalities of cause in the resulting genetic patterns. Arctic species show distinct shallow genetic clades with common geographical boundaries. Thus Beringia is distinct phylogeographically, but its role as a refugial source is complex. Arctic taxa do not show the common genetic pattern of southern richness and northern purity in north-temperate species. Temperate refugial regions in Europe and North America show relatively deep DNA divergence for many taxa, indicating their presence over several Ice Ages, and suggesting a mode of speciation by repeated allopatry. DNA evidence indicates temperate species in Europe had different patterns of postglacial colonization across the same area and different ones in previous oscillations, whereas the northwest region of North America was colonized from the north, east and south. Tropical montane regions contain deeply diverged lineages, often in a relatively small geographical area, suggesting their survival there from the Pliocene. Our poor understanding of refugial biodiversity would benefit from further combined fossil and genetic studies.

3,048 citations

Journal ArticleDOI
TL;DR: There are two categories of environmental changes with altitude: those physically tied to meters above sea level, such as atmospheric pressure, temperature and clear-sky turbidity; and those that are not generally altitude specific, suchAs moisture, hours of sunshine, wind, season length, geology and even human land use.
Abstract: Altitudinal gradients are among the most powerful 'natural experiments' for testing ecological and evolutionary responses of biota to geophysical influences, such as low temperature. However, there are two categories of environmental changes with altitude: those physically tied to meters above sea level, such as atmospheric pressure, temperature and clear-sky turbidity; and those that are not generally altitude specific, such as moisture, hours of sunshine, wind, season length, geology and even human land use. The confounding of the first category by the latter has introduced confusion in the scientific literature on altitude phenomena.

2,130 citations

Book ChapterDOI
15 Mar 2012

1,516 citations

Journal ArticleDOI
TL;DR: In this paper, a detailed analysis of the scientific literature (1993-2007) in order to identify refugia in the Mediterranean region, based on intraspecific phylogeographical studies of plant species, is presented.
Abstract: Aim The aims of this study were to assess the distribution of putative Mediterranean refugia of plants, to compare the locations of refugia and those of regional hotspots of plant biodiversity, and to provide a critical analysis of the Mediterranean refugium paradigm. Furthermore, we consider how biogeographical and genetic results can be combined to guide global conservation strategies. Location The Mediterranean region. Methods We started from a detailed analysis of the scientific literature (1993-2007) in order to identify refugia in the Mediterranean region, based on intraspecific phylogeographical studies of plant species. We used population locations together with gene-pool identity to establish the database, comparing patterns of phylogeographical concordance with the locations of Mediterranean refugia. We then tested the biogeographical congruence between two biodiversity components, namely phylogeographical refugia and regional hotspots. Results We identified 52 refugia in the Mediterranean bioclimatic region and confirmed the role played by the three major peninsulas, with a shared total of 25 refugia. We emphasize the importance of areas that have previously been attributed a lesser role (large Mediterranean islands, North Africa, Turkey, Catalonia). Of the 52 refugia identified, 33 are situated in the western Mediterranean Basin and 19 in the eastern part. The locations of the phylogeographically defined refugia are significantly associated with the 10 regional hotspots of plant biodiversity, with 26 of these refugia (i.e. 50%) occurring within the hotspots. Main conclusions The locations of refugia are determined by complex historical and environmental factors, the cumulative effects of which need to be considered because they have occurred since the Tertiary, rather than solely during the last glacial period. Refugia represent climatically stable areas and constitute a high conservation priority as key areas for the long-term persistence of species and genetic diversity, especially given the threat posed by the extensive environmental change processes operating in the Mediterranean region. The refugia defined here represent 'phylogeographical hotspots'; that is, significant reservoirs of unique genetic diversity favourable to the evolutionary processes of Mediterranean plant species.

968 citations