scispace - formally typeset
Search or ask a question
Author

Andreas Wilting

Other affiliations: University of Würzburg
Bio: Andreas Wilting is an academic researcher from Leibniz Association. The author has contributed to research in topics: Biodiversity & Threatened species. The author has an hindex of 25, co-authored 96 publications receiving 3019 citations. Previous affiliations of Andreas Wilting include University of Würzburg.


Papers
More filters
Journal ArticleDOI
TL;DR: It is concluded that a substantial improvement in the quality of model predictions can be achieved if uneven sampling effort is taken into account, thereby improving the efficacy of species conservation planning.
Abstract: Aim Advancement in ecological methods predicting species distributions is a crucial precondition for deriving sound management actions. Maximum entropy (MaxEnt) models are a popular tool to predict species distributions, as they are considered able to cope well with sparse, irregularly sampled data and minor location errors. Although a fundamental assumption of MaxEnt is that the entire area of interest has been systematically sampled, in practice, MaxEnt models are usually built from occurrence records that are spatially biased towards better-surveyed areas. Two common, yet not compared, strategies to cope with uneven sampling effort are spatial filtering of occurrence data and background manipulation using environmental data with the same spatial bias as occurrence data. We tested these strategies using simulated data and a recently collated dataset on Malay civet Viverra tangalunga in Borneo. Location Borneo, Southeast Asia. Methods We collated 504 occurrence records of Malay civets from Borneo of which 291 records were from 2001 to 2011 and used them in the MaxEnt analysis (baseline scenario) together with 25 environmental input variables. We simulated datasets for two virtual species (similar to a range-restricted highland and a lowland species) using the same number of records for model building. As occurrence records were biased towards north-eastern Borneo, we investigated the efficacy of spatial filtering versus background manipulation to reduce overprediction or underprediction in specific areas. Results Spatial filtering minimized omission errors (false negatives) and commission errors (false positives). We recommend that when sample size is insufficient to allow spatial filtering, manipulation of the background dataset is preferable to not correcting for sampling bias, although predictions were comparatively weak and commission errors increased. Main Conclusions We conclude that a substantial improvement in the quality of model predictions can be achieved if uneven sampling effort is taken into account, thereby improving the efficacy of species conservation planning.

822 citations

Journal ArticleDOI
TL;DR: A meta-analysis focussing on birds suggests that global warming has not systematically affected morphological traits, but has advanced phenological traits and indicates that the evolutionary load imposed by incomplete adaptive responses to ongoing climate change may already be threatening the persistence of species.
Abstract: Biological responses to climate change have been widely documented across taxa and regions, but it remains unclear whether species are maintaining a good match between phenotype and environment, i.e. whether observed trait changes are adaptive. Here we reviewed 10,090 abstracts and extracted data from 71 studies reported in 58 relevant publications, to assess quantitatively whether phenotypic trait changes associated with climate change are adaptive in animals. A meta-analysis focussing on birds, the taxon best represented in our dataset, suggests that global warming has not systematically affected morphological traits, but has advanced phenological traits. We demonstrate that these advances are adaptive for some species, but imperfect as evidenced by the observed consistent selection for earlier timing. Application of a theoretical model indicates that the evolutionary load imposed by incomplete adaptive responses to ongoing climate change may already be threatening the persistence of species.

255 citations

Journal ArticleDOI
TL;DR: The free and open‐source R package camtrapR is described, a new toolbox for flexible and efficient management of data generated in camera trap‐based wildlife studies and should be most useful to researchers and practitioners who regularly handle large amounts of camera trapping data.
Abstract: Summary Camera trapping is a widely applied method to study mammalian biodiversity and is still gaining popularity. It can quickly generate large amounts of data which need to be managed in an efficient and transparent way that links data acquisition with analytical tools. We describe the free and open-source R package camtrapR, a new toolbox for flexible and efficient management of data generated in camera trap-based wildlife studies. The package implements a complete workflow for processing camera trapping data. It assists in image organization, species and individual identification, data extraction from images, tabulation and visualization of results and export of data for subsequent analyses. There is no limitation to the number of images stored in this data management system; the system is portable and compatible across operating systems. The functions provide extensive automation to minimize data entry mistakes and, apart from species and individual identification, require minimal manual user input. Species and individual identification are performed outside the R environment, either via tags assigned in dedicated image management software or by moving images into species directories. Input for occupancy and (spatial) capture–recapture analyses for density and abundance estimation, for example in the R packages unmarked or secr, is computed in a flexible and reproducible manner. In addition, survey summary reports can be generated, spatial distributions of records can be plotted and exported to gis software, and single- and two-species activity patterns can be visualized. camtrapR allows for streamlined and flexible camera trap data management and should be most useful to researchers and practitioners who regularly handle large amounts of camera trapping data.

255 citations

Journal ArticleDOI
TL;DR: In this paper, a simulation study and empirical camera-trapping data were used to illustrate how ecological and sampling-related factors can bias relative abundance indices (RAI, number of records per trap effort), although these do not account for imperfect and variable detection.

249 citations

01 Jan 2017
TL;DR: The current classification of the Felidae was reviewed by a panel of 22 experts divided into core, expert and review groups, which make up the Cat Classification Task Force CCTF of the IUCN Cat ...
Abstract: The main task of the IUCN SSC Cat Specialist Group is the continuous review of the conservation status of all cat species and subspecies according to The IUCN Red List of Threatened Species process. A critical subject in this task is the systematic classification of the cat family, the Felidae. The taxonomy of cats has undergone considerable changes in the past, not only at the level of species and subspecies, but even at the level of genus. The classification presently used by the Cat Specialist Group was published in Wild Cats – Status Survey and Conservation Action Plan edited by K. Nowell and P. Jackson (published by IUCN 1996) and is based on the state of research in the early 1990s. Since then mainly studies using more advanced morphological, biogeographical and, foremost, molecular techniques have provided new insights into cat phylogeny and variation, suggesting several important changes with regard to species and subspecies, and the evolutionary relationships between genera and species. These changes may impact on the Red List process and on the listing of taxonomic units in international treaties and national legislation. Therefore the classification used by IUCN institutions has significance beyond the Red List. The Cat Specialist Group initiated a review of the present taxonomic system of the Felidae by an expert group, the Cat Classification Task Force CCTF. Their Terms of Reference were endorsed by Dr Simon Stuart, IUCN/SSC Chair 2008-2016.

220 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols used xiii 1.
Abstract: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols Used xiii 1. The Importance of Islands 3 2. Area and Number of Speicies 8 3. Further Explanations of the Area-Diversity Pattern 19 4. The Strategy of Colonization 68 5. Invasibility and the Variable Niche 94 6. Stepping Stones and Biotic Exchange 123 7. Evolutionary Changes Following Colonization 145 8. Prospect 181 Glossary 185 References 193 Index 201

14,171 citations

Journal Article
Fumio Tajima1
30 Oct 1989-Genomics
TL;DR: It is suggested that the natural selection against large insertion/deletion is so weak that a large amount of variation is maintained in a population.

11,521 citations

01 Jun 2012
TL;DR: SPAdes as mentioned in this paper is a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler and on popular assemblers Velvet and SoapDeNovo (for multicell data).
Abstract: The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online ( http://bioinf.spbau.ru/spades ). It is distributed as open source software.

10,124 citations

Journal ArticleDOI
TL;DR: The use of eDNA metabarcoding for surveying animal and plant richness, and the challenges in using eDNA approaches to estimate relative abundance are reviewed, which distill what is known about the ability of different eDNA sample types to approximate richness in space and across time.
Abstract: The genomic revolution has fundamentally changed how we survey biodiversity on earth. High-throughput sequencing ("HTS") platforms now enable the rapid sequencing of DNA from diverse kinds of environmental samples (termed "environmental DNA" or "eDNA"). Coupling HTS with our ability to associate sequences from eDNA with a taxonomic name is called "eDNA metabarcoding" and offers a powerful molecular tool capable of noninvasively surveying species richness from many ecosystems. Here, we review the use of eDNA metabarcoding for surveying animal and plant richness, and the challenges in using eDNA approaches to estimate relative abundance. We highlight eDNA applications in freshwater, marine and terrestrial environments, and in this broad context, we distill what is known about the ability of different eDNA sample types to approximate richness in space and across time. We provide guiding questions for study design and discuss the eDNA metabarcoding workflow with a focus on primers and library preparation methods. We additionally discuss important criteria for consideration of bioinformatic filtering of data sets, with recommendations for increasing transparency. Finally, looking to the future, we discuss emerging applications of eDNA metabarcoding in ecology, conservation, invasion biology, biomonitoring, and how eDNA metabarcoding can empower citizen science and biodiversity education.

1,038 citations