scispace - formally typeset
Search or ask a question
Author

Andrei Kazakov

Other affiliations: Princeton University
Bio: Andrei Kazakov is an academic researcher from National Institute of Standards and Technology. The author has contributed to research in topics: NIST & Combustion. The author has an hindex of 20, co-authored 50 publications receiving 3114 citations. Previous affiliations of Andrei Kazakov include Princeton University.


Papers
More filters
Journal ArticleDOI
TL;DR: A comprehensively tested H2/O2 chemical kinetic mechanism based on the work of Mueller et al. 1 and recently published kinetic and thermodynamic information is presented in this paper, which is validated against a wide range of experimental conditions, including those found in shock tubes, flow reactors, and laminar premixed flame.
Abstract: A comprehensively tested H2/O2 chemical kinetic mechanism based on the work of Mueller et al. 1 and recently published kinetic and thermodynamic information is presented. The revised mechanism is validated against a wide range of experimental conditions, including those found in shock tubes, flow reactors, and laminar premixed flame. Excellent agreement of the model predictions with the experimental observations demonstrates that the mechanism is comprehensive and has good predictive capabilities for different experimental systems, including new results published subsequent to the work of Mueller et al. 1, particularly high-pressure laminar flame speed and shock tube ignition results. The reaction H + OH + M is found to be primarily significant only to laminar flame speed propagation predictions at high pressure. All experimental hydrogen flame speed observations can be adequately fit using any of the several transport coefficient estimates presently available in the literature for the hydrogen/oxygen system simply by adjusting the rate parameters for this reaction within their present uncertainties. © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 36: 566–575, 2004

988 citations

Journal ArticleDOI
TL;DR: In this paper, a new experimental profile of stable species concentrations is reported for formaldehyde oxidation in a variable pressure flow reactor at initial temperatures of 850-950 K and at constant pressures ranging from 1.5 to 6.0 atm.
Abstract: New experimental profiles of stable species concentrations are reported for formaldehyde oxidation in a variable pressure flow reactor at initial temperatures of 850–950 K and at constant pressures ranging from 1.5 to 6.0 atm. These data, along with other data published in the literature and a previous comprehensive chemical kinetic model for methanol oxidation, are used to hierarchically develop an updated mechanism for CO/H2O/H2/O2, CH2O, and CH3OH oxidation. Important modifications include recent revisions for the hydrogen–oxygen submechanism (Li et al., Int J Chem Kinet 2004, 36, 565), an updated submechanism for methanol reactions, and kinetic and thermochemical parameter modifications based upon recently published information. New rate constant correlations are recommended for CO + OH = CO2 + H (R23) and HCO + M = H + CO + M (R24), motivated by a new identification of the temperatures over which these rate constants most affect laminar flame speed predictions (Zhao et al., Int J Chem Kinet 2005, 37, 282). The new weighted least-squares fit of literature experimental data for (R23) yields k23 = 2.23 × 105T1.89exp(583/T) cm3/mol/s and reflects significantly lower rate constant values at low and intermediate temperatures in comparison to another recently recommended correlation and theoretical predictions. The weighted least-squares fit of literature results for (R24) yields k24 = 4.75 × 1011T0.66exp(−7485/T) cm3/mol/s, which predicts values within uncertainties of both prior and new (Friedrichs et al., Phys Chem Chem Phys 2002, 4, 5778; DeSain et al., Chem Phys Lett 2001, 347, 79) measurements. Use of either of the data correlations reported in Friedrichs et al. (2002) and DeSain et al. (2001) for this reaction significantly degrades laminar flame speed predictions for oxygenated fuels as well as for other hydrocarbons. The present C1/O2 mechanism compares favorably against a wide range of experimental conditions for laminar premixed flame speed, shock tube ignition delay, and flow reactor species time history data at each level of hierarchical development. Very good agreement of the model predictions with all of the experimental measurements is demonstrated. © 2007 Wiley Periodicals, Inc. 39: 109–136, 2007

707 citations

Journal ArticleDOI
TL;DR: In this paper, the unimolecular decomposition reaction of dimethyl ether (DME) was studied theoretically using RRKM/master equation calculations, and a hierarchical methodology was applied to produce a comprehensive high-temperature model for pyrolysis and oxidation.
Abstract: The unimolecular decomposition reaction of dimethyl ether (DME) was studied theoretically using RRKM/master equation calculations. The calculated decomposition rate is significantly different from that utilized in prior work (Fischer et al., Int J Chem Kinet 2000, 32, 713–740; Curran et al., Int J Chem Kinet 2000, 32, 741–759). DME pyrolysis experiments were performed at 980 K in a variable-pressure flow reactor at a pressure of 10 atm, a considerably higher pressure than previous validation data. Both unimolecular decomposition and radical abstraction are significant in describing DME pyrolysis, and hierarchical methodology was applied to produce a comprehensive high-temperature model for pyrolysis and oxidation that includes the new decomposition parameters and more recent small molecule/radical kinetic and thermochemical data. The high-temperature model shows improved agreement against the new pyrolysis data and the wide range of high-temperature oxidation data modeled in prior work, as well as new low-pressure burner-stabilized species profiles (Cool et al., Proc Combust Inst 2007, 31, 285–294) and laminar flame data for DME/methane mixtures (Chen et al., Proc Combust Inst 2007, 31, 1215–1222). The high-temperature model was combined with low-temperature oxidation chemistry (adopted from Fischer et al., Int J Chem Kinet 2000, 32, 713–740), with some modifications to several important reactions. The revised construct shows good agreement against high- as well as low-temperature flow reactor and jet-stirred reactor data, shock tube ignition delays, and laminar flame species as well as flame speed measurements. © 2007 Wiley Periodicals, Inc. Int J Chem Kinet 40: 1–18, 2008

435 citations

Journal ArticleDOI
TL;DR: A chemical kinetic mechanism has been developed to describe the high-temperature oxidation and pyrolysis of n-heptane, iso-octane, and their mixtures and has been validated against an extensive set of experimental data gathered from the literature.
Abstract: A chemical kinetic mechanism has been developed to describe the high-temperature oxidation and pyrolysis of n-heptane, iso-octane, and their mixtures. An approach previously developed by this laboratory was used here to partially reduce the mechanism while maintaining a desired level of detailed reaction information. The relevant mechanism involves 107 species undergoing 723 reactions and has been validated against an extensive set of experimental data gathered from the literature that includes shock tube ignition delay measurements, premixed laminar-burning velocities, variable pressure flow reactor, and jet-stirred reactor species profiles. The modeled experiments treat dynamic systems with pressures up to 15 atm, temperatures above 950 K, and equivalence ratios less than approximately 2.5. Given the stringent and comprehensive set of experimental conditions against which the model is tested, remarkably good agreement is obtained between experimental and model results. © 2007 Wiley Periodicals, Inc. Int J Chem Kinet 39: 399–414, 2007

170 citations

Journal ArticleDOI
TL;DR: In this paper, the laminar flame speeds of DME/air mixtures at room temperature and atmospheric pressure were determined experimentally over an extensive range of equivalence ratios, with and without 15% nitrogen dilution, using particle image velocimetry and a stagnation flame burner configuration.

121 citations


Cited by
More filters
01 Feb 1995
TL;DR: In this paper, the unpolarized absorption and circular dichroism spectra of the fundamental vibrational transitions of the chiral molecule, 4-methyl-2-oxetanone, are calculated ab initio using DFT, MP2, and SCF methodologies and a 5S4P2D/3S2P (TZ2P) basis set.
Abstract: : The unpolarized absorption and circular dichroism spectra of the fundamental vibrational transitions of the chiral molecule, 4-methyl-2-oxetanone, are calculated ab initio. Harmonic force fields are obtained using Density Functional Theory (DFT), MP2, and SCF methodologies and a 5S4P2D/3S2P (TZ2P) basis set. DFT calculations use the Local Spin Density Approximation (LSDA), BLYP, and Becke3LYP (B3LYP) density functionals. Mid-IR spectra predicted using LSDA, BLYP, and B3LYP force fields are of significantly different quality, the B3LYP force field yielding spectra in clearly superior, and overall excellent, agreement with experiment. The MP2 force field yields spectra in slightly worse agreement with experiment than the B3LYP force field. The SCF force field yields spectra in poor agreement with experiment.The basis set dependence of B3LYP force fields is also explored: the 6-31G* and TZ2P basis sets give very similar results while the 3-21G basis set yields spectra in substantially worse agreements with experiment. jg

1,652 citations

Journal ArticleDOI
TL;DR: In this paper, the authors address the nature of these height fluctuations by means of straightforward atomistic Monte Carlo simulations based on a very accurate many-body interatomic potential for carbon and find that ripples spontaneously appear due to thermal fluctuations with a size distribution peaked around 70 \AA which is compatible with experimental findings (50-100 \AA) but not with the current understanding of flexible membranes.
Abstract: The stability of two-dimensional (2D) layers and membranes is subject of a long standing theoretical debate. According to the so called Mermin-Wagner theorem, long wavelength fluctuations destroy the long-range order for 2D crystals. Similarly, 2D membranes embedded in a 3D space have a tendency to be crumpled. These dangerous fluctuations can, however, be suppressed by anharmonic coupling between bending and stretching modes making that a two-dimensional membrane can exist but should present strong height fluctuations. The discovery of graphene, the first truly 2D crystal and the recent experimental observation of ripples in freely hanging graphene makes these issues especially important. Beside the academic interest, understanding the mechanisms of stability of graphene is crucial for understanding electronic transport in this material that is attracting so much interest for its unusual Dirac spectrum and electronic properties. Here we address the nature of these height fluctuations by means of straightforward atomistic Monte Carlo simulations based on a very accurate many-body interatomic potential for carbon. We find that ripples spontaneously appear due to thermal fluctuations with a size distribution peaked around 70 \AA which is compatible with experimental findings (50-100 \AA) but not with the current understanding of stability of flexible membranes. This unexpected result seems to be due to the multiplicity of chemical bonding in carbon.

1,367 citations

Journal ArticleDOI
TL;DR: In this paper, a detailed chemical kinetic mechanism has been developed to describe the oxidation of small hydrocarbon and oxygenated hydrocarbon species, such as formaldehyde, methanol, acetaldehyde, and ethanol.
Abstract: A detailed chemical kinetic mechanism has been developed to describe the oxidation of small hydrocarbon and oxygenated hydrocarbon species. The reactivity of these small fuels and intermediates is of critical importance in understanding and accurately describing the combustion characteristics, such as ignition delay time, flame speed, and emissions of practical fuels. The chosen rate expressions have been assembled through critical evaluation of the literature, with minimum optimization performed. The mechanism has been validated over a wide range of initial conditions and experimental devices, including flow reactor, shock tube, jet-stirred reactor, and flame studies. The current mechanism contains accurate kinetic descriptions for saturated and unsaturated hydrocarbons, namely methane, ethane, ethylene, and acetylene, and oxygenated species; formaldehyde, methanol, acetaldehyde, and ethanol.

925 citations

Journal ArticleDOI
01 Jun 2008-Fuel
TL;DR: In this paper, a comprehensive review of the technical feasibility of di-methyl ether (DME) as a candidate fuel for environmentally-friendly compression-ignition engines independent of size or application is provided.

879 citations