scispace - formally typeset
Search or ask a question
Author

Andrei Osinsky

Bio: Andrei Osinsky is an academic researcher from Corning Inc.. The author has contributed to research in topics: Metalorganic vapour phase epitaxy & Molecular beam epitaxy. The author has an hindex of 43, co-authored 182 publications receiving 5629 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors compare self-heating effects in AlGaN-GaN heterostructure field effect transistors (HFETs) grown on sapphire and SiC substrates.
Abstract: We compare self-heating effects in AlGaN-GaN heterostructure field effect transistors (HFETs) grown on sapphire and SiC substrates. Heat dissipation strongly affects the device characteristics soon after the application of the source-drain voltage (in less than 10/sup -7/ s). Our results show that in HFET's with the total epilayer thickness less than 1.5 /spl mu/m, the thermal impedance, /spl Theta/ is primarily determined by the substrate material and not by the material of the active layer. For our devices grown on 6H-SiC substrates, we measured /spl Theta/ of approximately 2/spl deg/C/spl middot/mm/W, which was more than an order of magnitude smaller than /spl Theta/=25/spl deg/C mm/W measured for similar AlGaN/GaN HFET's grown on sapphire. Our results demonstrate that AlGaN-GaN HFET's grown on SiC substrates combine advantages of superior electron transport properties in AlGaN/GaN heterostructures with excellent thermal properties of SiC, which should make these devices suitable for high-power electronic applications.

300 citations

Journal ArticleDOI
TL;DR: In this article, the performance results of AlGaN-GaN Heterostructure Field Effect Transistors (HFETs) grown on SiC substrates are reported, and the maximum transconductance of these devices was 142 mS/mm and the source-drain current was as high as 0.95 A/mm.
Abstract: The performance results AlGaN-GaN Heterostructure Field Effect Transistors (HFETs) grown on SiC substrates are reported. The maximum transconductance of these devices was 142 mS/mm and the source-drain current was as high as 0.95 A/mm. The maximum dissipated DC power at room temperature was 0.6 MW/cm/sup 2/, which is more than three times higher than that in similar devices grown on sapphire. This high thermal breakdown threshold was achieved primarily due to the effective heat sink through the SiC substrate. These devices demonstrated stable performance at elevated temperatures up to 250/spl deg/C. The source-drain current saturation was observed up to 300/spl deg/C. The leakage current in the below threshold regime was temperature-activated with an activation energy of 0.38 eV.

259 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated two-dimensional electron transport in doped AlGaN-GaN heterostructures (with the electron sheet concentration ns≈1013 cm−2) grown on conducting 6H-SiC substrates in the temperature range T=0.3-300 K.
Abstract: We investigated two-dimensional electron transport in doped AlGaN–GaN heterostructures (with the electron sheet concentration ns≈1013 cm−2) grown on conducting 6H–SiC substrates in the temperature range T=0.3–300 K. The electron mobility in AlGaN–GaN heterostructures grown on SiC was higher than in those on sapphire substrates, especially at cryogenic temperatures. The highest measured Hall mobility at room temperature was μH=2019 cm2/V s. At low temperatures, the electron mobility increased approximately five times and saturated below 10 K at μH=10250 cm2/V s. The experimental results are compared with the electron mobility calculations accounting for various electron scattering mechanisms.

254 citations

Journal ArticleDOI
TL;DR: In this paper, the authors report on the fabrication and characterization of p-π-n GaN ultraviolet detectors and show that the photoresponse is RC-limited with the response time decreasing from 17.4 ns at zero bias to 10.3 ns at −6 V bias.
Abstract: We report on the fabrication and characterization of p-π-n GaN ultraviolet detectors. The peak responsivity at ∼363 nm is measured to be 0.1 A/W in the photovoltaic mode, and 0.14 A/W with a bias of −15 V. Speed measurements have shown the photoresponse to be RC-limited with the response time decreasing from 17.4 ns at zero bias to 10.3 ns at −6 V bias. For a 200×200 μ m2 device, we measure the dark current to be 2.7 pA at −3 V bias, and a noise density of less than 10−25 A2/Hz, the noise floor of the measurement. Extrapolating the noise data taken at higher reverse biases, we estimate the noise equivalent power to be 6.6×10−15 W/Hz1/2.

224 citations

Journal ArticleDOI
TL;DR: In this paper, the authors report record electron mobility values in unintentionally doped β-Ga2O3 films grown by metal-organic chemical vapor deposition, using degenerately Sn-doped regrown n+β-Ga 2O3 contact layers.
Abstract: In this work, we report record electron mobility values in unintentionally doped β-Ga2O3 films grown by metal-organic chemical vapor deposition. Using degenerately Sn-doped regrown n+ β-Ga2O3 contact layers, we were able to maintain Ohmic contact to the β-Ga2O3 films down to 40 K, allowing for reliable temperature-dependent Hall measurement. An electron mobility of 176 cm2/V s and 3481 cm2/V s were measured at room temperature and 54 K, respectively. The room and low temperature mobilities are both among the highest reported values in a bulk β-Ga2O3 film. A low net background charge concentration of 7.4 × 1015 cm−3 was confirmed by both temperature dependent Hall measurement and capacitance-voltage measurement. The feasibility of achieving low background impurity concentration and high electron mobility paves the road for the demonstration of high performance power electronics with high breakdown voltages and low on-resistances.

179 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature.
Abstract: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature. Even though research focusing on ZnO goes back many decades, the renewed interest is fueled by availability of high-quality substrates and reports of p-type conduction and ferromagnetic behavior when doped with transitions metals, both of which remain controversial. It is this renewed interest in ZnO which forms the basis of this review. As mentioned already, ZnO is not new to the semiconductor field, with studies of its lattice parameter dating back to 1935 by Bunn [Proc. Phys. Soc. London 47, 836 (1935)], studies of its vibrational properties with Raman scattering in 1966 by Damen et al. [Phys. Rev. 142, 570 (1966)], detailed optical studies in 1954 by Mollwo [Z. Angew. Phys. 6, 257 (1954)], and its growth by chemical-vapor transport in 1970 by Galli and Coker [Appl. Phys. ...

10,260 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the role of spontaneous and piezoelectric polarization on the carrier confinement at GaN/AlGaN and AlGaN/GaN interfaces.
Abstract: Carrier concentration profiles of two-dimensional electron gases are investigated in wurtzite, Ga-face AlxGa1−xN/GaN/AlxGa1−xN and N-face GaN/AlxGa1−xN/GaN heterostructures used for the fabrication of field effect transistors. Analysis of the measured electron distributions in heterostructures with AlGaN barrier layers of different Al concentrations (0.15

2,581 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reported the observation of optically pumped lasing in ZnO at room temperature using a plasma-enhanced molecular beam epitaxy on sapphire substrates.
Abstract: We report the observation of optically pumped lasing in ZnO at room temperature. Thin films of ZnO were grown by plasma-enhanced molecular beam epitaxy on (0001) sapphire substrates. Laser cavities formed by cleaving were found to lase at a threshold excitation intensity of 240 kW cm−2. We believe these results demonstrate the high quality of ZnO epilayers grown by molecular beam epitaxy while clearly demonstrating the viability of ZnO based light emitting devices.

2,126 citations

Journal ArticleDOI
TL;DR: In this paper, the structural and point defects caused by lattice and stacking mismatch with substrates are discussed. But even the best of the three binaries, InN, AIN and AIN as well as their ternary compounds, contain many structural defects, and these defects notably affect the electrical and optical properties of the host material.
Abstract: Gallium nitride (GaN) and its allied binaries InN and AIN as well as their ternary compounds have gained an unprecedented attention due to their wide-ranging applications encompassing green, blue, violet, and ultraviolet (UV) emitters and detectors (in photon ranges inaccessible by other semiconductors) and high-power amplifiers. However, even the best of the three binaries, GaN, contains many structural and point defects caused to a large extent by lattice and stacking mismatch with substrates. These defects notably affect the electrical and optical properties of the host material and can seriously degrade the performance and reliability of devices made based on these nitride semiconductors. Even though GaN broke the long-standing paradigm that high density of dislocations precludes acceptable device performance, point defects have taken the center stage as they exacerbate efforts to increase the efficiency of emitters, increase laser operation lifetime, and lead to anomalies in electronic devices. The p...

1,724 citations