scispace - formally typeset
Search or ask a question
Author

Andrei Shibkov

Bio: Andrei Shibkov is an academic researcher. The author has contributed to research in topics: Design for manufacturability & Integrated circuit design. The author has an hindex of 4, co-authored 4 publications receiving 200 citations.

Papers
More filters
Proceedings ArticleDOI
08 Jul 2003
TL;DR: In this paper, the authors explore a new paradigm for nanometer-scale design, one in which more advanced models of critical low-k1 lithographic printing effects are incorporated into the design flow to improve upon yield and performance verification accuracy.
Abstract: Subwavelength lithography at low contrast, or low-k1 factor, leads to new requirements for design, design analysis, and design verification techniques. These techniques must account for inherent physical circuit feature distortions resulting from layout pattern-dependent design-to-silicon patterning processes in this era. These distortions are unavoidable, even in the presence of sophisticated Resolution Enhancement Technologies (RET), and are a 'fact-of-life’ for the designer implementing nanometer-scale designs for the foreseeable low-k1 future. The consequence is that fabricated silicon feature shapes and dimensions are in general printed with far less fidelity in comparison to the designer’s desired layout than in past generations and that the designer must consider design within significantly different margins of geometry tolerance. Traditional (Mead-Conway originated) WYSIWYG (what you see is what you get) design methodologies, assume that the designer’s physical circuit element shapes are accurate in comparison to the corresponding shapes on the real fabricated IC, and uses design rules to verify satisfactory fabrication compliance, as the input for both interconnect parasitic loading calculations and to transistor models used for performance simulation. However, these assumptions are increasingly poor ones as k1 decreases to unprecidented levels -- with concomitant increase in patterned feature distortion and fabrication yield failure modes. This paper explores a new paradigm for nanometer-scale design, one in which more advanced models of critical low-k1 lithographic printing effects are incorporated into the design flow to improve upon yield and performance verification accuracy. We start with an analysis of a complex 32-bit adder block circuit design to determine systematic changes in gate length, width and shape variations for each MOSFET in the circuit due to optical proximity effects. The physical gate dimensions for all, as predicted by the simulations, are then incorporated into the circuit simulation models and netlist (schematic) and are used to calculate the changes in critical parametric yield factors such as timing and power consumption in the circuit behavior. These functional consequences create a manufacturability tolerance requirement that relates to function and parametric yield, not just physical manufacturability. We then explore the improvements in functional attributes and manufacturability that arise from systematic correction of these distortions by RET including; simulation-driven model-based OPC, alternating-aperture PSM (altPSM), and altPSM+OPC. This analysis is just one dimension of a systmatic methodology that incorporates lithographic effects into a design for manufacturing (DFM) scheme. The benefits promise dramatically improved silicon-signoff verification, predictive performance and yield analysis, and more cost-effective application of RET.

167 citations

Patent
02 Mar 2004
TL;DR: In this paper, a method for performing selfconsistent minimization of IC design and process interactions is presented, based on calculating the amount of design-process interaction based on the information derived from circuit sensitivity analysis and process characterization.
Abstract: A method for performing self-consistent minimization of IC design and process interactions is disclosed. This method is based on calculating the amount of design-process interaction based on the information derived from circuit sensitivity analysis and process characterization. Optical proximity correction is subsequently performed in such a way that a) ensures that desired circuit performance is achieved in a given manufacturing environment if at all possible and b) also limits the increase in mask complexity to a realistic minimum.

17 citations

Proceedings ArticleDOI
05 May 2005
TL;DR: In this article, the authors present an integrated implementation of the methodology in a complete, self-consistent flow, integrating calibrated process simulation, electrical circuit performance analysis and optionally, automatic Optical Proximity Correction (OPC) into a comprehensive Design-for-manufacturing (DFM) flow.
Abstract: Accurate manufacturing of devices at sub-wavelength nodes is becoming increasingly difficult. Lithography and lithographic process effects are quickly becoming a major concern for physical designers working at sub-wavelength process nodes. Beyond the rapidly expanding design rule deck, physical designers must have deeper access to and understanding of the process in order to grasp the full impact of layout changes on electrical performance. Process aberrations, such as misalignment, are manifested as CD variation resulting in parametric shifts and systematic yield problems. These yield issues must be addressed by designers, but designers do not have adequate tools nor information to fully comprehend these issues. To correct this situation, a new approach is needed to bring information from the manufacturing process upstream into the design creation process. This work extends and generalizes concepts presented in [1-3] and presents an integrated implementation of the methodology in a complete, self-consistent flow. This methodology integrates calibrated process simulation, electrical circuit performance analysis and optionally, automatic Optical Proximity Correction (OPC) into a comprehensive Design-for-Manufacturing (DFM) flow. Process window simulations uncover design-process interactions across multiple process variables (misalignment, bias, etc.). To characterize the process, a design of experiments qualifies the impact of design variation on electrical performance. Data from these experiments is used to refine and calibrate process simulation models, ensuring accurate simulation. As a result, this procedure identifies critical performance and systematic yield issues prior to tapeout, eliminating costly design respins and preserving design intent.

12 citations

Patent
06 Feb 2006
TL;DR: In this article, a method of modeling submicron MOSFETs for the purpose of circuit simulation is presented, which is capable of accurately predicting performance of a MOSFLET with complex geometry closely approximating the actual geometry of a device manufactured as part of an integrated circuit.
Abstract: Disclosed is a method of modeling submicron MOSFETs for the purpose of circuit simulation. This invention is capable of accurately predicting performance of a MOSFET with complex geometry closely approximating the actual geometry of a device manufactured as part of an integrated circuit. Actual device geometry is predicted using physical simulation to account for process-related pattern distortion. The method constructs a sub-circuit representation of a MOSFET that is equivalent to a regular MOSFET compact model when ideal device geometry is assumed, while providing substantially better accuracy when process-related geometry distortion is considered. Models created using the disclosed method are compatible with existing circuit simulators. The method may be readily implemented using SPICE or other circuit simulators in a design flow.

4 citations


Cited by
More filters
Patent
06 May 2005
TL;DR: In this article, a system for analyzing IC layouts and designs by calculating variations of a number of objects to be created on a semiconductor wafer as a result of different process conditions is presented.
Abstract: A system for analyzing IC layouts and designs by calculating variations of a number of objects to be created on a semiconductor wafer as a result of different process conditions. The variations are analyzed to determine individual feature failures or to rank layout designs by their susceptibility to process variations. In one embodiment, the variations are represented by PV-bands having an inner edge that defines the smallest area in which an object will always print and an outer edge that defines the largest area in which an object will print under some process conditions.

313 citations

Patent
08 Mar 2007
TL;DR: In this paper, a linear gate electrode track that extends over both a diffusion region and a non-active region of the substrate is defined to minimize a separation distance between ends of adjacent linear gate electrodes segments within the linear-gated electrode track, while ensuring adequate electrical isolation between the adjacent linear gated electrode segments.
Abstract: A semiconductor device includes a substrate and a number of diffusion regions defined within the substrate. The diffusion regions are separated from each other by a non-active region of the substrate. The semiconductor device includes a number of linear gate electrode tracks defined to extend over the substrate in a single common direction. Each linear gate electrode track is defined by one or more linear gate electrode segments. Each linear gate electrode track that extends over both a diffusion region and a non-active region of the substrate is defined to minimize a separation distance between ends of adjacent linear gate electrode segments within the linear gate electrode track, while ensuring adequate electrical isolation between the adjacent linear gate electrode segments.

217 citations

Patent
31 Oct 2006
TL;DR: In this paper, a method of designing an integrated circuit is provided in which the design layout is optimized using a process model until the design constraints are satisfied by the image contours simulated by the process model.
Abstract: A method of designing an integrated circuit is provided in which the design layout is optimized using a process model until the design constraints are satisfied by the image contours simulated by the process model. The process model used in the design phase need not be as accurate as the lithographic model used in preparing the lithographic mask layout during data prep. The resulting image contours are then included with the modified, optimized design layout to the data prep process, in which the mask layout is optimized using the lithographic process model, for example, including RET and OPC. The mask layout optimization matches the images simulated by the lithographic process model with the image contours generated during the design phase, which ensures that the design and manufacturability constraints specified by the designer are satisfied by the optimized mask layout.

184 citations

Patent
11 Jan 2008
TL;DR: In this paper, a method for defining a dynamic array section to be manufactured on a semiconductor chip is described, which includes defining a peripheral boundary of the dynamic array and a manufacturing assurance halo outside the boundary.
Abstract: A method is disclosed for defining a dynamic array section to be manufactured on a semiconductor chip. The method includes defining a peripheral boundary of the dynamic array section. The method also includes defining a manufacturing assurance halo outside the boundary of the dynamic array section. The method further includes controlling chip layout features within the manufacturing assurance halo to ensure that manufacturing of conductive features inside the boundary of the dynamic array section is not adversely affected by chip layout features within the manufacturing assurance halo.

163 citations

Patent
07 Mar 2009
TL;DR: In this article, the vertical connection structures are placed at a number of gridpoints within a vertical connection placement grid so as to provide electrical connectivity between layout features in the lower and higher chip levels.
Abstract: First and second virtual grates are defined as respective sets of parallel virtual lines extending across a layout area in first and second perpendicular directions, respectively. The virtual lines of the first and second virtual grates correspond to placement locations for layout features in lower and higher chip levels, respectively. Each intersection point between virtual lines of the first and second virtual grates is a gridpoint within a vertical connection placement grid. Vertical connection structures are placed at a number of gridpoints within the vertical connection placement grid so as to provide electrical connectivity between layout features in the lower and higher chip levels. The vertical connection structures are placed so as to minimize a number of different spacing sizes between neighboring vertical connection structures across the vertical connection placement grid, while simultaneously minimizing to an extent possible layout area size. The vertical connection structures may be contacts or vias.

152 citations