scispace - formally typeset
Search or ask a question
Author

Andrei V. Kelarev

Bio: Andrei V. Kelarev is an academic researcher from RMIT University. The author has contributed to research in topics: Semigroup & Mathematical sciences. The author has an hindex of 27, co-authored 212 publications receiving 3303 citations. Previous affiliations of Andrei V. Kelarev include Ural State University & University of Melbourne.


Papers
More filters
Book
01 Jan 2003
TL;DR: This work defines graph algebras and reveals their applicability to automata theory and explores assorted monoids, semigroups, rings, codes, and other algebraic structures to outline theorems and algorithms for finite state automata and grammars.
Abstract: Graph algebras possess the capacity to relate fundamental concepts of computer science, combinatorics, graph theory, operations research, and universal algebra. They are used to identify nontrivial connections across notions, expose conceptual properties, and mediate the application of methods from one area toward questions of the other four. After a concentrated review of the prerequisite mathematical background, Graph Algebras and Automata defines graph algebras and reveals their applicability to automata theory. It proceeds to explore assorted monoids, semigroups, rings, codes, and other algebraic structures and to outline theorems and algorithms for finite state automata and grammars.

201 citations

Journal ArticleDOI
TL;DR: In this paper, a complete description of all commutative semigroups satisfying three other combinatorial properties defined in terms of directed graphs is given, by a graph we mean a directed graph without loops or multiple edges.

198 citations

Journal ArticleDOI
13 Nov 2013
TL;DR: This article gives a survey of all results on the power graphs of groups and semigroups obtained in the literature.
Abstract: This article gives a survey of all results on the power graphs of groups and semigroups obtained in the literature. Various conjectures due to other authors, questions and open problems are also included.

187 citations

Journal ArticleDOI
TL;DR: This paper proposes a new method of using Cayley graphs for classification of data using the endomorphism monoids of graphs, a convenient tools expressing asymmetries of the graphs.

184 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

01 Jan 2002

9,314 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a state-of-the-art review that presents a holistic view of the BD challenges and BDA methods theorized/proposed/employed by organizations to help others understand this landscape with the objective of making robust investment decisions.

1,267 citations

Journal ArticleDOI
TL;DR: A systematic review of the applications of machine learning, data mining techniques and tools in the field of diabetes research with respect to a) Prediction and Diagnosis, b) Diabetic Complications, c) Genetic Background and Environment, and e) Health Care and Management with the first category appearing to be the most popular.
Abstract: The remarkable advances in biotechnology and health sciences have led to a significant production of data, such as high throughput genetic data and clinical information, generated from large Electronic Health Records (EHRs). To this end, application of machine learning and data mining methods in biosciences is presently, more than ever before, vital and indispensable in efforts to transform intelligently all available information into valuable knowledge. Diabetes mellitus (DM) is defined as a group of metabolic disorders exerting significant pressure on human health worldwide. Extensive research in all aspects of diabetes (diagnosis, etiopathophysiology, therapy, etc.) has led to the generation of huge amounts of data. The aim of the present study is to conduct a systematic review of the applications of machine learning, data mining techniques and tools in the field of diabetes research with respect to a) Prediction and Diagnosis, b) Diabetic Complications, c) Genetic Background and Environment, and e) Health Care and Management with the first category appearing to be the most popular. A wide range of machine learning algorithms were employed. In general, 85% of those used were characterized by supervised learning approaches and 15% by unsupervised ones, and more specifically, association rules. Support vector machines (SVM) arise as the most successful and widely used algorithm. Concerning the type of data, clinical datasets were mainly used. The title applications in the selected articles project the usefulness of extracting valuable knowledge leading to new hypotheses targeting deeper understanding and further investigation in DM.

811 citations