scispace - formally typeset
Search or ask a question
Author

Andrei Zagrai

Bio: Andrei Zagrai is an academic researcher from New Mexico Institute of Mining and Technology. The author has contributed to research in topics: Structural health monitoring & Mechanical impedance. The author has an hindex of 18, co-authored 79 publications receiving 2495 citations. Previous affiliations of Andrei Zagrai include University of South Carolina & Stevens Institute of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the state-of-the-art in piezoelectric-wafer active sensors structural health monitoring and damage detection is reviewed, and two main detection strategies are considered: the E/M impedance method for near field damage detection, and wave propagation methods for far-field damage detection.
Abstract: Piezoelectric wafer active sensors may be applied on aging aircraft structures to monitor the onset and progress of structural damage such as fatigue cracks and corrosion. The state of the art in piezoelectric-wafer active sensors structural health monitoring and damage detection is reviewed. Methods based on (a) elastic wave propagation and (b) the Electro–Mechanical (E/M) impedance technique are cited and briefly discussed. For health monitoring of aging aircraft structures, two main detection strategies are considered: the E/M impedance method for near field damage detection, and wave propagation methods for far-field damage detection. These methods are developed and verified on simple-geometry specimens and on realistic aging aircraft panels with seeded cracks and corrosion. The experimental methods, signal processing, and damage detection algorithms are tuned to the specific method used for structural interrogation. In the E/M impedance method approach, the high-frequency spectrum, representative of the structural resonances, is recorded. Then, overallstatistics damage metrics can be used to compare the impedance signatures and correlate the change in these signatures with the damage progression and intensity. In our experiments, the (1 � R 2 ) 3 damage metric was found to best fit the results in the 300–450 kHz band. In the wave propagation approach, the pulse-echo and acousto-ultrasonic methods can be utilized to identify the additional reflections generated from crack damage and the changes in transmission phase and velocity associated with corrosion damage. The paper ends with a conceptual design of a structural health monitoring system and suggestions for aging aircraft installation utilizing active-sensor arrays, data concentrators, wireless transmission, and a health monitoring and processing unit.

587 citations

Journal ArticleDOI
TL;DR: In this article, an analytical model based on structural vibration theory and theory of piezoelectricity was developed and used to predict the electro-mechanical (E/M) impedance response, as it would be measured at the PSS's terminals.
Abstract: The benefits and limitations of using embedded piezoelectric active sensors for structural identification at ultrasonic frequency are highlighted. An analytical model based on structural vibration theory and theory of piezoelectricity was developed and used to predict the electro-mechanical (E/M) impedance response, as it would be measured at the piezoelectric active sensor's terminals. The model considers one-dimension structures and accounts for both axial and flexural vibrations. Experiments were conducted on simple specimens in support of the theoretical investigation, and on realistic turbine blade specimen to illustrate the method's potential. It was shown that E/M impedance spectrum recorded by the piezoelectric active sensor accurately represents the mechanical response of a structure. It was further proved that the response of the structure is not modified by the presence of the sensor, thus validating the latter's noninvasive characteristics. It is shown that such sensors, of negligible mass, can be permanently applied to the structure creating a nonintrusive sensor array adequate for on-line automatic structural identification and health monitoring. The sensor calibration procedure is outlined. Numerical estimation of the noninvasive properties of the proposed active sensors in comparison with conventional sensors is presented. Self-diagnostics capabilities of the proposed sensors were also investigated and methods for automatic self-test implementation are discussed. The paper underlines that the use of piezoelectric wafer active sensors is not only advantageous, but, in certain situations, may be the sole investigative option, as in the case of precision machinery, small but critical turbine-engine parts, and computer industry components.

293 citations

Journal ArticleDOI
TL;DR: In this paper, the use of Electro-Mechanical (E/M) impedance method for structural health monitoring of thin plates has been described, where the ability of the method to identify the presence of damage was investigated by performing an experiment where the damage in the form of crack was simulated with An EDM slit placed at various distances from the sensor.
Abstract: This paper describes the utilization of Electro-Mechanical (E/M) impedance method for structural health monitoring of thin plates. The method allows the direct identification of structural dynamics by obtaining its E/M impedance or admittance signatures. The analytical model for two-dimensions structure was developed and verified with experiments. Good matching of experimental results and calculated spectra was obtained for axial and flexural components. The ability of the method to identify the presence of damage was investigated by performing an experiment where the damage in the form of crack was simulated with An EDM slit placed at various distances from the sensor. It was found that the crack presence dramatically modifies the E/M impedance spectrum and this modification decreases as the distance between the sensor and the crack increases. Several overall-statistics damage metrics, which may be used for on-line structural heath monitoring, were investigated. Among these candidate damage metrics, the α-th power of the correlation coefficient deviation, CCD α , 3 < α < 7, used in the high frequency band 300-450 kHz, was found to be most successful. Careful selection of the high frequency band and proper choice of the appropriate damage metric were found to be essential for successful damage detection and structural health monitoring.

271 citations

Journal ArticleDOI
TL;DR: An analytical model based on structural vibration theory and theory of piezoelectricity was developed and used to predict the electromechanical (E/M) impedance response, as it would be measured at the PSS terminals as discussed by the authors.
Abstract: In the beginning, the classical one-dimensional analysis of piezoelectric active sensors is reviewed. The complete derivation for a free-free sensor is then extended to cover the cases of clamped and elastically constrained sensors. An analytical model based on structural vibration theory and theory of piezoelectricity was developed and used to predict the electromechanical (E/M) impedance response, as it would be measured at the piezoelectric active sensor’s terminals. The model considers one-dimensional structures and accounts for both axial and flexural vibrations. The numerical analysis was performed and supported by experimental results. Experiments were conducted on simple beam specimens to support the theoretical investigation, and on thin gauge aluminum plates to illustrate the method’s potential. It was shown that E/M impedance spectrum recorded by the piezoelectric active sensor accurately represents the mechanical response of a structure. It was further proved that the response of the structure...

270 citations

Journal ArticleDOI
TL;DR: In this paper, the use of the electro-mechanical (E/M) impedance method for health monitoring of thin-wall aircraft panels and aerospace structures is described, which accounts for axial and flexural vibrations of the structure and considers both the structural dynamics and the sensor dynamics.
Abstract: The use of the electro-mechanical (E/M) impedance method for health monitoring of thin plates and aerospace structures is described. As a nondestructive evaluation technology, the E/M impedance method allows us to identify the local dynamics of the structure directly through the E/M impedance signatures of piezoelectric wafer active sensors (PWAS) permanently mounted to the structure. An analytical model for 2-D thin-wall structures, which predicts the E/M impedance response at PWAS terminals, was developed and validated. The model accounts for axial and flexural vibrations of the structure and considers both the structural dynamics and the sensor dynamics. Calibration experiments performed on circular thin plates with centrally attached PWAS showed that the presence of damage modifies the high-frequency E/M impedance spectrum causing frequency shifts, peak splitting, and appearance of new harmonics. Overall-statistics damage metrics and probabilistic neural network (PNN) are used to classify the spectral data and identify damage severity. On thin-wall aircraft panels, the presence of damage influences the sensors E/M impedance spectrum. When crack damage is in the PWAS medium field, changes in the distribution of harmonics take place and when crack damage is in the PWAS near field, changes in both the harmonics and the dereverberated response are observed. These effects are successfully classified with PNN and overall-statistics metrics, respectively. This proves that permanently attached PWAS in conjunction with the E/M impedance method can be successfully used in structural health monitoring to detect the presence of incipient damage through the examination and classification of the high-frequency E/M impedance spectra.

222 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A comprehensive review on the state of the art of Lamb wave-based damage identification approaches for composite structures, addressing the advances and achievements in these techniques in the past decades, is provided in this paper.

1,350 citations

Journal ArticleDOI
TL;DR: In this article, Niezrecki et al. summarized the hardware and software issues of impedance-based structural health modi- toring based on piezoelectric materials.
Abstract: In this paper we summarize the hardware and software issues of impedance-based structural health moni- toring based on piezoelectric materials. The basic concept of the method is to use high-frequency structural excitations to monitor the local area of a structure for changes in structural impedance that would indicate imminent damage. A brief overview of research work on experimental and theoretical stud- ies on various structures is considered and several research papers on these topics are cited. This paper concludes with a discussion of future research areas and path forward. Piezoelectric materials acting in the "direct" manner pro- duce an electrical charge when stressed mechanically. Con- versely, a mechanical strain is produced when an electrical field is applied. The direct piezoelectric effect has often been used in sensors such as piezoelectric accelerometers. With the converse effect, piezoelectric materials apply local- ized strains and directly influence the dynamic response of the structural elements when either embedded or surface bonded into a structure. Piezoelectric materials have been widely used in structural dynamics applications because they are lightweight, robust, inexpensive, and come in a variety of forms ranging from thin rectangular patches to complex shapes being used in microelectromechanical systems (MEMS) fabrications. The applications of piezoelectric mate- rials in structural dynamics are too numerous to mention and are detailed in the literature (Niezrecki et al., 2001; Chopra, 2002). The purpose of this paper is to explore the importance and effectiveness of impedance-based structural health mon- itoring from both hardware and software standpoints. Imped- ance-based structural health monitoring techniques have been developed as a promising tool for real-time structural dam- age assessment, and are considered as a new non-destructive evaluation (NDE) method. A key aspect of impedance-based structural health monitoring is the use of piezoceramic (PZT) materials as collocated sensors and actuators. The basis of this active sensing technology is the energy transfer between the actuator and its host mechanical system. It has been shown that the electrical impedance of the PZT material can be directly related to the mechanical impedance of a host structural component where the PZT patch is attached. Uti- lizing the same material for both actuation and sensing not only reduces the number of sensors and actuators, but also reduces the electrical wiring and associated hardware. Fur- thermore, the size and weight of the PZT patch are negligible compared to those of the host structures so that its attach- ment to the structure introduces no impact on dynamic char- acteristics of the structure. A typical deployment of a PZT on a structure being monitored is shown in Figure 1. The first part of this paper (Sections 2 and 3) deals with the theoretical background and design considerations of the impedance-based structural health monitoring. The signal processing of the impedance method is outlined in Section 4. In Section 5, experimental studies using the impedance approaches are summarized and related previous works are listed. Section 6 presents a brief comparison of the imped- ance method with other NDE approaches and, finally, sev- eral future issues are outlined in Section 7. 2. Theoretical Background

1,048 citations

Journal ArticleDOI
TL;DR: In this paper, the authors identify the topics that are most relevant to multifunctional composite materials and structures and review representative journal publications that are related to those topics and make suggestions regarding future research needs.

956 citations

Journal ArticleDOI
TL;DR: In this paper, the capability of embedded piezoelectric wafer active sensors (PWAS) to excite and detect tuned Lamb waves for structural health monitoring is explored.
Abstract: The capability of embedded piezoelectric wafer active sensors (PWAS) to excite and detect tuned Lamb waves for structural health monitoring is explored. First, a brief review of Lamb waves theory is presented. Second, the PWAS operating principles and their structural coupling through a thin adhesive layer are analyzed. Then, a model of the Lamb waves tuning mechanism with PWAS transducers is described. The model uses the space domain Fourier transform. The analysis is performed in the wavenumber space. The inverse Fourier transform is used to return into the physical space. The integrals are evaluated with the residues theorem. A general solution is obtained for a generic expression of the interface shear stress distribution. The general solution is reduced to a closed-form expression for the case of ideal bonding which admits a closed-form Fourier transform of the interfacial shear stress. It is shown that the strain wave response varies like sin a, whereas the displacement response varies like sinc a. ...

890 citations