scispace - formally typeset
Search or ask a question
Author

Andrej Atrens

Bio: Andrej Atrens is an academic researcher from University of Queensland. The author has contributed to research in topics: Corrosion & Stress corrosion cracking. The author has an hindex of 69, co-authored 417 publications receiving 21741 citations. Previous affiliations of Andrej Atrens include Brown, Boveri & Cie & Swiss Federal Laboratories for Materials Science and Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a detailed review of the corrosion mechanisms of magnesium alloys is presented, and the basis for the design of new alloys with improved corrosion properties is provided for improving the corrosion properties.
Abstract: The high strength to weight ratio of magnesium alloys makes them extremely attractive for applications in transport or aerospace technology. However, their corrosion behavior is a major issue and one reason why they are still not as popular as aluminum alloys. This papers reviews the corrosion mechanisms of magnesium and provides the basis for the design of new alloys with improved corrosion properties.

1,922 citations

Journal ArticleDOI
TL;DR: In this article, a mechanistic overview of the various types of magnesium corrosion is provided, and a theoretical framework for further, much needed research is provided. But, as stated in the introduction, "There is still vast scope both for better fundamental understanding of corrosion processes, engineering usage of magnesium, and also on the corrosion protection of magnesium alloys in service".
Abstract: The purpose of this paper is to provide a succinct but nevertheless complete mechanistic overview of the various types of magnesium corrosion. The understanding of the corrosion processes of magnesium alloys builds upon our understanding of the corrosion of pure magnesium. This provides an understanding of the types of corrosion exhibited by,magnesium alloys, and also of the environmental factors Of most importance. This deep understanding is required as a foundation if we are to produce magnesium alloys much more resistant to corrosion than the present alloys. Much has already been achieved, but there is vast scope for improvement. This present analysis can provide a foundation and a theoretical framework for further, much needed research. There is still vast scope both for better fundamental understanding of corrosion processes, engineering usage of magnesium, and also on the corrosion protection of magnesium alloys in service.

1,713 citations

Journal ArticleDOI
TL;DR: In this paper, the corrosion of die cast AZ91D was studied and related to its microstructure, and it was found that the casting method can influence the corrosion performance by its influence on the alloy microstructures, which is attributed to a combination of higher volume fraction of the beta phase, a more continuous beta phase distribution around finer alpha grains, and lower porosity in the skin layer than in the interior of the die casting.

876 citations

Journal ArticleDOI
TL;DR: In this article, the corrosion behavior of dual phase alloys was studied in 1 N NaCl at pH 11 by measuring electrochemical polarization curves, electrochemical AC impedance spectroscopy (EIS) and simultaneously measuring the hydrogen evolution rate and the magnesium dissolution rate.

776 citations

Journal ArticleDOI
TL;DR: In this article, the electrochemical behavior of magnesium was studied in representative chloride and sulphate solutions including NaCl, Na2SO4, NaOH and their mixed solutions, HCl, and H2SO 4: (1) by measuring electrochemical polarisation curves, (2) by using electrochemical impedance spectroscopy (EIS), and (3) by simultaneous measurement of hydrogen gas evolution and measurement of magnesium dissolution rates using ICPEAS.

757 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: While the book is a standard fixture in most chemical and physical laboratories, including those in medical centers, it is not as frequently seen in the laboratories of physician's offices (those either in solo or group practice), and I believe that the Handbook can be useful in those laboratories.
Abstract: There is a special reason for reviewing this book at this time: it is the 50th edition of a compendium that is known and used frequently in most chemical and physical laboratories in many parts of the world. Surely, a publication that has been published for 56 years, withstanding the vagaries of science in this century, must have had something to offer. There is another reason: while the book is a standard fixture in most chemical and physical laboratories, including those in medical centers, it is not as frequently seen in the laboratories of physician's offices (those either in solo or group practice). I believe that the Handbook can be useful in those laboratories. One of the reasons, among others, is that the various basic items of information it offers may be helpful in new tests, either physical or chemical, which are continuously being published. The basic information may relate

2,493 citations

Journal ArticleDOI
TL;DR: Magnesium and its alloys have been investigated recently by many authors as a suitable biodegradable biomaterial as mentioned in this paper, and the latest achievements and comment on the selection and use, test methods and the approaches to develop and produce magnesium alloys that are intended to perform clinically with an appropriate host response.
Abstract: Biodegradable metals are breaking the current paradigm in biomaterial science to develop only corrosion resistant metals. In particular, metals which consist of trace elements existing in the human body are promising candidates for temporary implant materials. These implants would be temporarily needed to provide mechanical support during the healing process of the injured or pathological tissue. Magnesium and its alloys have been investigated recently by many authors as a suitable biodegradable biomaterial. In this investigative review we would like to summarize the latest achievements and comment on the selection and use, test methods and the approaches to develop and produce magnesium alloys that are intended to perform clinically with an appropriate host response.

1,569 citations

Journal ArticleDOI
TL;DR: A brief overview of the available SPD technologies is given in this paper, along with a summary of unusual mechanical, physical and other properties achievable by SPD processing, as well as the challenges this research is facing, some of them generic and some specific to the nanoSPD area.

1,451 citations

Journal ArticleDOI
TL;DR: In this article, the authors reviewed and evaluated the applications of magnesium in the automotive industry that can significantly contribute to greater fuel economy and environmental conservation, and concluded that reasonable prices and improved properties of Mg and its alloys will lead to massive use of magnesium.
Abstract: The objective of this study is to review and evaluate the applications of magnesium in the automotive industry that can significantly contribute to greater fuel economy and environmental conservation. In the study, the current advantages, limitations, technological barriers and future prospects of Mg alloys in the automotive industry are given. The usage of magnesium in automotive applications is also assessed for the impact on environmental conservation. Recent developments in coating and alloying of Mg improved the creep and corrosion resistance properties of magnesium alloys for elevated temperature and corrosive environments. The results of the study conclude that reasonable prices and improved properties of Mg and its alloys will lead to massive use of magnesium. Compared to using alternative materials, using Mg alloys results in a 22% to 70% weight reduction. Lastly, the use of magnesium in automotive components is increasing as knowledge of forming processes of Mg alloys increases.

1,410 citations