scispace - formally typeset
Search or ask a question
Author

Andrej Singer

Bio: Andrej Singer is an academic researcher from Cornell University. The author has contributed to research in topics: Laser & Diffraction. The author has an hindex of 26, co-authored 76 publications receiving 2539 citations. Previous affiliations of Andrej Singer include University of California, San Diego & University of Münster.


Papers
More filters
Journal ArticleDOI
TL;DR: This article begins with the discussion of various rechargeable batteries and associated important scientific questions in the field, followed by a review of synchrotron X-ray based analytical tools and their successful applications and their fundamental insights into these scientific questions.
Abstract: Rechargeable battery technologies have ignited major breakthroughs in contemporary society, including but not limited to revolutions in transportation, electronics, and grid energy storage The remarkable development of rechargeable batteries is largely attributed to in-depth efforts to improve battery electrode and electrolyte materials There are, however, still intimidating challenges of lower cost, longer cycle and calendar life, higher energy density, and better safety for large scale energy storage and vehicular applications Further progress with rechargeable batteries may require new chemistries (lithium ion batteries and beyond) and better understanding of materials electrochemistry in the various battery technologies In the past decade, advancement of battery materials has been complemented by new analytical techniques that are capable of probing battery chemistries at various length and time scales Synchrotron X-ray techniques stand out as one of the most effective methods that allow for near

363 citations

Journal ArticleDOI
19 Jun 2015-Science
TL;DR: Three-dimensional imaging of dislocation dynamics in individual battery cathode nanoparticles under operando conditions using Bragg coherent diffractive imaging opens a powerful avenue for facilitating improvement and rational design of nanostructured materials.
Abstract: Topological defects can markedly alter nanomaterial properties. This presents opportunities for “defect engineering,” where desired functionalities are generated through defect manipulation. However, imaging defects in working devices with nanoscale resolution remains elusive. We report three-dimensional imaging of dislocation dynamics in individual battery cathode nanoparticles under operando conditions using Bragg coherent diffractive imaging. Dislocations are static at room temperature and mobile during charge transport. During the structural phase transformation, the lithium-rich phase nucleates near the dislocation and spreads inhomogeneously. The dislocation field is a local probe of elastic properties, and we find that a region of the material exhibits a negative Poisson’s ratio at high voltage. Operando dislocation imaging thus opens a powerful avenue for facilitating improvement and rational design of nanostructured materials.

312 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reveal the link between voltage fade and nucleation of a mobile dislocation network in the oxide nanoparticles, offering design ideas to restore the voltage in the battery.
Abstract: Lithium-rich layered oxides (LRLO) are among the leading candidates for the next-generation cathode material for energy storage, delivering 50% excess capacity over commercially used compounds. Despite excellent prospects, voltage fade has prevented effective use of the excess capacity, and a major challenge has been a lack of understanding of the mechanisms underpinning the voltage fade. Here, using operando three-dimensional Bragg coherent diffractive imaging, we directly observe the nucleation of a mobile dislocation network in LRLO nanoparticles. The dislocations form more readily in LRLO as compared with a classical layered oxide, suggesting a link between the defects and voltage fade. We show microscopically how the formation of partial dislocations contributes to the voltage fade. The insights allow us to design and demonstrate an effective method to recover the original high-voltage functionality. Our findings reveal that the voltage fade in LRLO is reversible and call for new paradigms for improved design of oxygen-redox active materials. Voltage fade is a major obstacle for the efficient use of lithium-rich layered oxide materials in batteries. Here, the authors reveal the link between voltage fade and nucleation of a mobile dislocation network in the oxide nanoparticles, offering design ideas to restore the voltage.

266 citations

Journal ArticleDOI
TL;DR: Measurements of the spatial and temporal coherence of single, femtosecond x-ray pulses generated by the first hard x-rays free-electron laser, the Linac Coherent Light Source, are presented and it is found that 78% of the total power is contained in the dominant mode.
Abstract: Measurements of the spatial and temporal coherence of single, femtosecond x-ray pulses generated by the first hard x-ray free-electron laser, the Linac Coherent Light Source, are presented. Single-shot measurements were performed at 780 eV x-ray photon energy using apertures containing double pinholes in "diffract-and-destroy" mode. We determined a coherence length of 17 μm in the vertical direction, which is approximately the size of the focused Linac Coherent Light Source beam in the same direction. The analysis of the diffraction patterns produced by the pinholes with the largest separation yields an estimate of the temporal coherence time of 0.55 fs. We find that the total degree of transverse coherence is 56% and that the x-ray pulses are adequately described by two transverse coherent modes in each direction. This leads us to the conclusion that 78% of the total power is contained in the dominant mode.

147 citations

Journal ArticleDOI
TL;DR: In this paper, the authors observed nucleation of a mobile dislocation network in nanoparticles of lithium-rich layered oxide material and found that dislocations form more readily in the lithium-based layered oxide materials as compared with a conventional layered oxides.
Abstract: Defects and their interactions in crystalline solids often underpin material properties and functionality as they are decisive for stability, result in enhanced diffusion, and act as a reservoir of vacancies. Recently, lithium-rich layered oxides have emerged among the leading candidates for the next-generation energy storage cathode material, delivering 50 % excess capacity over commercially used compounds. Oxygen-redox reactions are believed to be responsible for the excess capacity, however, voltage fading has prevented commercialization of these new materials. Despite extensive research the understanding of the mechanisms underpinning oxygen-redox reactions and voltage fade remain incomplete. Here, using operando three-dimensional Bragg coherent diffractive imaging, we directly observe nucleation of a mobile dislocation network in nanoparticles of lithium-rich layered oxide material. Surprisingly, we find that dislocations form more readily in the lithium-rich layered oxide material as compared with a conventional layered oxide material, suggesting a link between the defects and the anomalously high capacity in lithium-rich layered oxides. The formation of a network of partial dislocations dramatically alters the local lithium environment and contributes to the voltage fade. Based on our findings we design and demonstrate a method to recover the original high voltage functionality. Our findings reveal that the voltage fade in lithium-rich layered oxides is reversible and call for new paradigms for improved design of oxygen-redox active materials.

145 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
10 Mar 1970

8,159 citations

01 Jan 2016
TL;DR: The table of integrals series and products is universally compatible with any devices to read and is available in the book collection an online access to it is set as public so you can get it instantly.
Abstract: Thank you very much for downloading table of integrals series and products. Maybe you have knowledge that, people have look hundreds times for their chosen books like this table of integrals series and products, but end up in harmful downloads. Rather than reading a good book with a cup of coffee in the afternoon, instead they cope with some harmful virus inside their laptop. table of integrals series and products is available in our book collection an online access to it is set as public so you can get it instantly. Our book servers saves in multiple locations, allowing you to get the most less latency time to download any of our books like this one. Merely said, the table of integrals series and products is universally compatible with any devices to read.

4,085 citations

01 Jan 2011

2,117 citations