scispace - formally typeset
Search or ask a question
Author

Andres A. Reynoso

Bio: Andres A. Reynoso is an academic researcher from Balseiro Institute. The author has contributed to research in topics: Physics & Spin polarization. The author has an hindex of 6, co-authored 15 publications receiving 214 citations. Previous affiliations of Andres A. Reynoso include National Atomic Energy Commission & University of Sydney.

Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that with an in-plane external magnetic field an anomalous supercurrent appears even for zero phase difference between the superconducting electrodes, and the external field induces large critical current asymmetries between the two flow directions, leading to supercurrent rectifying effects.
Abstract: We consider a ballistic Josephson junction with a quantum point contact in a two-dimensional electron gas with Rashba spin-orbit coupling. The point contact acts as a spin filter when embedded in a circuit with normal electrodes. We show that with an in-plane external magnetic field an anomalous supercurrent appears even for zero phase difference between the superconducting electrodes. In addition, the external field induces large critical current asymmetries between the two flow directions, leading to supercurrent rectifying effects.

130 citations

Journal ArticleDOI
TL;DR: In this paper, the amplitude's asymmetry of the spin-split transverse electron focusing peak is used to extract information about the electron's spin polarization, which can be used to detect the one-body effect in quantum point contacts.
Abstract: It has been predicted recently that an electron beam can be polarized when it flows adiabatically through a quantum point contact in a system with spin-orbit interaction. Here, we show that a simple transverse electron focusing setup can be used to detect such polarized current. It uses the amplitude's asymmetry of the spin-split transverse electron focusing peak to extract information about the electron's spin polarization. On the other hand, and depending on the quantum point contact geometry, including this one-body effect can be important when using the focusing setup to study many-body effects in quantum point contacts.

36 citations

Journal ArticleDOI
TL;DR: In this article, the spin polarization induced by a current flow in clean two-dimensional electron gases with Rashba spin-orbit coupling was studied and it was shown that spin polarization can be strongly enhanced.
Abstract: We study the spin polarization induced by a current flow in clean two-dimensional electron gases with Rashba spin-orbit coupling. This geometric effect originates from special properties of the electron's scattering at the edges of the sample. In wide samples, the spin polarization has its largest value at low energies (close to the bottom of the band) and goes to zero at higher energies. In this case, the spin polarization is dominated by the presence of evanescent modes which have an explicit spin component outside the plane. In quantum wires, on the other hand, the spin polarization is dominated by interference effects induced by multiple scattering at the edges. Here, the spin polarization is quite sensitive to the value of the Fermi energy, especially close to the point where a new channel opens up. We analyzed different geometries and found that the spin polarization can be strongly enhanced.

29 citations

Journal ArticleDOI
TL;DR: By directly analysing the temporal decay of the modes, this work can clearly distinguish an abrupt crossover related to the acoustic mean free path of the phonons in a layered system, and the constraints imposed on the acoustic decay channels when reducing the dimensionality.
Abstract: A time-resolved observation of coherent interlayer longitudinal acoustic phonons in thin layers of 2H-MoSe2 is reported. A femtosecond pump–probe technique is used to investigate the evolution of the energy loss of these vibrational modes in a wide selection of MoSe2 flakes with different thicknesses ranging from bilayer up to the bulk limit. By directly analysing the temporal decay of the modes, we can clearly distinguish an abrupt crossover related to the acoustic mean free path of the phonons in a layered system, and the constraints imposed on the acoustic decay channels when reducing the dimensionality. For thicker samples, the main acoustic attenuation mechanism is attributed to the scattering of the acoustic modes with thermal phonons. For samples thinner than ∼20 molecular layers, the predominant damping mechanism is ascribed to the effects of surface asperity. Losses intrinsic to the low dimensionality of single or few layer materials impose critical limitations for their use in optomechanical and optoelectronic devices.

29 citations

Journal ArticleDOI
TL;DR: In this paper, the authors studied the transport properties of modeled mesoscopic rings subject to Rashba and Dresselhaus couplings in the presence of an additional in-plane Zeeman field acting as a probe.
Abstract: Electron spins in a two-dimensional electron gas can be manipulated by spin-orbit (SO) fields originating from either Rashba or Dresselhaus interactions with independent isotropic characteristics. Together, though, they produce anisotropic SO fields with consequences on quantum transport through spin interference. Here we study the transport properties of modeled mesoscopic rings subject to Rashba and Dresselhaus [001] SO couplings in the presence of an additional in-plane Zeeman field acting as a probe. By means of one- and two-dimensional quantum transport simulations we show that this setting presents anisotropies in the quantum resistance as a function of the Zeeman field direction. Moreover, the anisotropic resistance can be tuned by the Rashba strength up to the point to invert its response to the Zeeman field. We also find that a topological transition in the field texture that is associated with a geometric phase switching is imprinted in the anisotropy pattern. We conclude that resistance anisotropy measurements can reveal signatures of SO textures and geometric phases in spin carriers.

18 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors describe the controlled creation of long-range equal-spin triplet supercurrents in ferromagnets and their contribution to spintronics, which is a fruitful basis for the study of fundamental physics as they combine macroscopic quantum coherence with microscopic exchange interactions.
Abstract: During the past 15 years a new field has emerged, which combines superconductivity and spintronics, with the goal to pave a way for new types of devices for applications combining the virtues of both by offering the possibility of long-range spin-polarized supercurrents. Such supercurrents constitute a fruitful basis for the study of fundamental physics as they combine macroscopic quantum coherence with microscopic exchange interactions, spin selectivity, and spin transport. This report follows recent developments in the controlled creation of long-range equal-spin triplet supercurrents in ferromagnets and its contribution to spintronics. The mutual proximity-induced modification of order in superconductor-ferromagnet hybrid structures introduces in a natural way such evasive phenomena as triplet superconductivity, odd-frequency pairing, Fulde-Ferrell-Larkin-Ovchinnikov pairing, long-range equal-spin supercurrents, [Formula: see text]-Josephson junctions, as well as long-range magnetic proximity effects. All these effects were rather exotic before 2000, when improvements in nanofabrication and materials control allowed for a new quality of hybrid structures. Guided by pioneering theoretical studies, experimental progress evolved rapidly, and since 2010 triplet supercurrents are routinely produced and observed. We have entered a new stage of studying new phases of matter previously out of our reach, and of merging the hitherto disparate fields of superconductivity and spintronics to a new research direction: super-spintronics.

408 citations

Journal ArticleDOI
TL;DR: In this article, the phase offsets of the Josephson ϕ0-junction were investigated using a nanowire quantum dot and showed that ϕ_0 can be controlled by electrostatic gating.
Abstract: The Josephson effect describes supercurrent flowing through a junction connecting two superconducting leads by a thin barrier. This current is driven by a superconducting phase difference ϕ between the leads. In the presence of chiral and time-reversal symmetry of the Cooper pair tunnelling process2, the current is strictly zero when ϕ vanishes. Only if these underlying symmetries are broken can the supercurrent for ϕ = 0 be finite. This corresponds to a ground state of the junction being offset by a phase ϕ_0, different from 0 or π. Here, we report such a Josephson ϕ0-junction based on a nanowire quantum dot. We use a quantum interferometer device to investigate phase offsets and demonstrate that ϕ_0 can be controlled by electrostatic gating. Our results may have far-reaching implications for superconducting flux- and phase-defined quantum bits as well as for exploring topological superconductivity in quantum dot systems.

204 citations

Journal ArticleDOI
TL;DR: It is shown that with an in-plane external magnetic field an anomalous supercurrent appears even for zero phase difference between the superconducting electrodes, and the external field induces large critical current asymmetries between the two flow directions, leading to supercurrent rectifying effects.
Abstract: We consider a ballistic Josephson junction with a quantum point contact in a two-dimensional electron gas with Rashba spin-orbit coupling. The point contact acts as a spin filter when embedded in a circuit with normal electrodes. We show that with an in-plane external magnetic field an anomalous supercurrent appears even for zero phase difference between the superconducting electrodes. In addition, the external field induces large critical current asymmetries between the two flow directions, leading to supercurrent rectifying effects.

130 citations

Journal ArticleDOI
TL;DR: This report follows recent developments in the controlled creation of long-range equal-spin triplet supercurrents in ferromagnets and its contribution to spintronics.
Abstract: During the past 15 years a new field has emerged, which combines superconductivity and spintronics, with the goal to pave a way for new types of devices for applications combining the virtues of both by offering the possibility of long-range spin-polarized supercurrents. Such supercurrents constitute a fruitful basis for the study of fundamental physics as they combine macroscopic quantum coherence with microscopic exchange interactions, spin selectivity, and spin transport. This report follows recent developments in the controlled creation of long-range equal-spin triplet supercurrents in ferromagnets and its contribution to spintronics. The mutual proximity-induced modification of order in superconductor-ferromagnet hybrid structures introduces in a natural way such evasive phenomena as triplet superconductivity, odd-frequency pairing, Fulde-Ferrell-Larkin-Ovchinnikov pairing, long-range equal-spin supercurrents, $\pi$-Josephson junctions, as well as long-range magnetic proximity effects. All these effects were rather exotic before 2000, when improvements in nanofabrication and materials control allowed for a new quality of hybrid structures. Guided by pioneering theoretical studies, experimental progress evolved rapidly, and since 2010 triplet supercurrents are routinely produced and observed. We have entered a new stage of studying new phases of matter previously out of our reach, and of merging the hitherto disparate fields of superconductivity and spintronics to a new research direction: super-spintronics.

113 citations

Journal ArticleDOI
TL;DR: In this paper, the Andreev bound states (ABS) in ballistic semiconductor channels with gate-tunable, high transmission probabilities up to 0.9 were detected.
Abstract: The superconducting proximity effect in semiconductor nanowires has recently enabled the study of new superconducting architectures, such as gate-tunable superconducting qubits and multiterminal Josephson junctions. As opposed to their metallic counterparts, the electron density in semiconductor nanosystems is tunable by external electrostatic gates, providing a highly scalable and in situ variation of the device properties. In addition, semiconductors with large g-factor and spin–orbit coupling have been shown to give rise to exotic phenomena in superconductivity, such as φ0 Josephson junctions and the emergence of Majorana bound states. Here, we report microwave spectroscopy measurements that directly reveal the presence of Andreev bound states (ABS) in ballistic semiconductor channels. We show that the measured ABS spectra are the result of transport channels with gate-tunable, high transmission probabilities up to 0.9, which is required for gate-tunable Andreev qubits and beneficial for braiding schemes of Majorana states. For the first time, we detect excitations of a spin-split pair of ABS and observe symmetry-broken ABS, a direct consequence of the spin–orbit coupling in the semiconductor. Andreev bound states in semiconductor–superconductor hybrid structures are studied using microwave spectroscopy — a tool that could be also used for investigating Majorana modes.

108 citations