scispace - formally typeset
Search or ask a question
Author

Andrés Merino-Viteri

Other affiliations: James Cook University
Bio: Andrés Merino-Viteri is an academic researcher from Pontificia Universidad Católica del Ecuador. The author has contributed to research in topics: Chytridiomycosis & Global warming. The author has an hindex of 7, co-authored 18 publications receiving 1745 citations. Previous affiliations of Andrés Merino-Viteri include James Cook University.

Papers
More filters
Journal ArticleDOI
12 Jan 2006-Nature
TL;DR: It is shown that a recent mass extinction associated with pathogen outbreaks is tied to global warming, and it is proposed that temperatures at many highland localities are shifting towards the growth optimum of Batrachochytrium, thus encouraging outbreaks.
Abstract: As the Earth warms, many species are likely to disappear, often because of changing disease dynamics. Here we show that a recent mass extinction associated with pathogen outbreaks is tied to global warming. Seventeen years ago, in the mountains of Costa Rica, the Monteverde harlequin frog (Atelopus sp.) vanished along with the golden toad (Bufo periglenes). An estimated 67% of the 110 or so species of Atelopus, which are endemic to the American tropics, have met the same fate, and a pathogenic chytrid fungus (Batrachochytrium dendrobatidis) is implicated. Analysing the timing of losses in relation to changes in sea surface and air temperatures, we conclude with 'very high confidence' (> 99%, following the Intergovernmental Panel on Climate Change, IPCC) that large-scale warming is a key factor in the disappearances. We propose that temperatures at many highland localities are shifting towards the growth optimum of Batrachochytrium, thus encouraging outbreaks. With climate change promoting infectious disease and eroding biodiversity, the urgency of reducing greenhouse-gas concentrations is now undeniable.

1,528 citations

Journal ArticleDOI
TL;DR: In this article, the authors identify management actions from across the world and from diverse disciplines that are applicable to minimizing loss of amphibian biodiversity under climate change, grouped under three thematic areas of intervention: installation of microclimate and microhabitat refuges; enhancement and restoration of breeding sites; and manipulation of hydroperiod or water levels at breeding sites.
Abstract: 1. Altered global climates in the 21st century pose serious threats for biological systems and practical actions are needed to mount a response for species at risk. 2. We identify management actions from across the world and from diverse disciplines that are applicable to minimizing loss of amphibian biodiversity under climate change. Actions were grouped under three thematic areas of intervention: (i) installation of microclimate and microhabitat refuges; (ii) enhancement and restoration of breeding sites; and (iii) manipulation of hydroperiod or water levels at breeding sites. 3. Synthesis and applications. There are currently few meaningful management actions that will tangibly impact the pervasive threat of climate change on amphibians. A host of potentially useful but poorly tested actions could be incorporated into local or regional management plans, programmes and activities for amphibians. Examples include: installation of irrigation sprayers to manipulate water potentials at breeding sites; retention or supplementation of natural and artificial shelters (e.g. logs, cover boards) to reduce desiccation and thermal stress; manipulation of canopy cover over ponds to reduce water temperature; and, creation of hydrologoically diverse wetland habitats capable of supporting larval development under variable rainfall regimes. We encourage researchers and managers to design, test and scale up new initiatives to respond to this emerging crisis. © 2011 The Authors. Journal of Applied Ecology

134 citations

Journal ArticleDOI
TL;DR: In this article, the authors identify the most important areas for biodiversity conservation in mainland Ecuador that can contribute to preserving key species (i.e. endemic, threatened) and ecosystems in the wider landscape, thus complementing current conservation efforts.
Abstract: Ecuador’s territory harbors a unique set of species and ecosystems, many of them endemic to the countries’ territory and subject to different sources of threat of anthropogenic origin. Despite national and subnational conservation strategies developed in Ecuador to conserve its biodiversity in the long run, including the National System of Protected Areas (PANE) and the forest conservation incentive program SocioBosque (PSB), further actions are needed to mitigate and reverse the effects of threats for the persistence of biodiversity. This study was designed to identify the most important areas for biodiversity conservation in mainland Ecuador that can contribute to preserving key species (i.e. endemic, threatened) and ecosystems in the wider landscape, thus complementing current conservation efforts (i.e. PANE). Species distribution models and recent maps were used to identify a set of 744 species and 87 ecosystems as surrogates of the country’s biodiversity. Marxan, a systematic reserve selection algori...

76 citations

Journal ArticleDOI
TL;DR: This study uses statistical downscaling to account for environmental factors and develops high-resolution estimates of daily maximum temperatures for a 36 000 km2 study area over a 38-year period that consistently place focal species within their fundamental thermal niche, whereas coarsely resolved layers do not.
Abstract: To assess a species' vulnerability to climate change, we commonly use mapped environmental data that are coarsely resolved in time and space. Coarsely resolved temperature data are typically inaccurate at predicting temperatures in microhabitats used by an organism and may also exhibit spatial bias in topographically complex areas. One consequence of these inaccuracies is that coarsely resolved layers may predict thermal regimes at a site that exceed species' known thermal limits. In this study, we use statistical downscaling to account for environmental factors and develop high-resolution estimates of daily maximum temperatures for a 36 000 km2 study area over a 38-year period. We then demonstrate that this statistical downscaling provides temperature estimates that consistently place focal species within their fundamental thermal niche, whereas coarsely resolved layers do not. Our results highlight the need for incorporation of fine-scale weather data into species' vulnerability analyses and demonstrate that a statistical downscaling approach can yield biologically relevant estimates of thermal regimes.

58 citations

Journal ArticleDOI
TL;DR: In this paper, the authors examined variability in critical thermal limits (CTmax and CTmin) and thermal breadth (TB; CTmax-CTmin) in 21 species of Pristimantis frogs and estimated vulnerability to acute thermal stress from heat and cold by partitioning thermal diversity into elevational and microclimatic variation.
Abstract: AIM: We analysed elevational and microclimatic drivers of thermal tolerance diversity in a tropical mountain frog clade to test three macrophysiological predictions: less spatial variation in upper than lower thermal limits (Bretts’ heat‐invariant hypothesis); narrower thermal tolerance ranges in habitats with less variation in temperature (Janzen's climatic variability hypothesis); and higher level of heat impacts at lower elevations. LOCATION: Forest and open habitats through a 4,230‐m elevational gradient across the tropical Andes of Ecuador. METHOD: We examined variability in critical thermal limits (CTmax and CTmin) and thermal breadth (TB; CTmax–CTmin) in 21 species of Pristimantis frogs. Additionally, we monitored maximum and minimum temperatures at the local scale (tmax, tmin) and estimated vulnerability to acute thermal stress from heat (CTmax–tmax) and cold (tmin–CTmin), by partitioning thermal diversity into elevational and microclimatic variation. RESULTS: Our results were consistent with Brett's hypothesis: elevation promotes more variation in CTmin and tmin than in CTmax and tmax. Frogs inhabiting thermally variable open habitats have higher CTmax and tmax and greater TBs than species restricted to forest habitats, which show less climatic overlap across the elevational gradient (Janzen's hypothesis). Vulnerability to heat stress was higher in open than forest habitats and did not vary with elevation. MAIN CONCLUSIONS: We suggest a mechanistic explanation of thermal tolerance diversity in elevational gradients by including microclimatic thermal variation. We propose that the unfeasibility to buffer minimum temperatures locally may explain the rapid increase in cold tolerance (lower CTmin) with elevation. In contrast, the relative invariability in heat tolerance (CTmax) with elevation may revolve around the organisms’ habitat selection of open‐ and canopy‐buffered habitats. Secondly, on the basis of microclimatic estimates, lowland and upland species may be equally vulnerable to temperature increase, which is contrary to the pattern inferred from regional interpolated climate estimators.

41 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Range-restricted species, particularly polar and mountaintop species, show severe range contractions and have been the first groups in which entire species have gone extinct due to recent climate change.
Abstract: Ecological changes in the phenology and distribution of plants and animals are occurring in all well-studied marine, freshwater, and terrestrial groups These observed changes are heavily biased in the directions predicted from global warming and have been linked to local or regional climate change through correlations between climate and biological variation, field and laboratory experiments, and physiological research Range-restricted species, particularly polar and mountaintop species, show severe range contractions and have been the first groups in which entire species have gone extinct due to recent climate change Tropical coral reefs and amphibians have been most negatively affected Predator-prey and plant-insect interactions have been disrupted when interacting species have responded differently to warming Evolutionary adaptations to warmer conditions have occurred in the interiors of species’ ranges, and resource use and dispersal have evolved rapidly at expanding range margins Observed genetic shifts modulate local effects of climate change, but there is little evidence that they will mitigate negative effects at the species level

7,657 citations

Journal ArticleDOI
19 Aug 2011-Science
TL;DR: A meta-analysis shows that species are shifting their distributions in response to climate change at an accelerating rate, and that the range shift of each species depends on multiple internal species traits and external drivers of change.
Abstract: The distributions of many terrestrial organisms are currently shifting in latitude or elevation in response to changing climate Using a meta-analysis, we estimated that the distributions of species have recently shifted to higher elevations at a median rate of 110 meters per decade, and to higher latitudes at a median rate of 169 kilometers per decade These rates are approximately two and three times faster than previously reported The distances moved by species are greatest in studies showing the highest levels of warming, with average latitudinal shifts being generally sufficient to track temperature changes However, individual species vary greatly in their rates of change, suggesting that the range shift of each species depends on multiple internal species traits and external drivers of change Rapid average shifts derive from a wide diversity of responses by individual species

3,986 citations

Journal ArticleDOI
TL;DR: The results show that warming in the tropics, although relatively small in magnitude, is likely to have the most deleterious consequences because tropical insects are relatively sensitive to temperature change and are currently living very close to their optimal temperature, so that warming may even enhance their fitness.
Abstract: The impact of anthropogenic climate change on terrestrial organisms is often predicted to increase with latitude, in parallel with the rate of warming. Yet the biological impact of rising temperatures also depends on the physiological sensitivity of organisms to temperature change. We integrate empirical fitness curves describing the thermal tolerance of terrestrial insects from around the world with the projected geographic distribution of climate change for the next century to estimate the direct impact of warming on insect fitness across latitude. The results show that warming in the tropics, although relatively small in magnitude, is likely to have the most deleterious consequences because tropical insects are relatively sensitive to temperature change and are currently living very close to their optimal temperature. In contrast, species at higher latitudes have broader thermal tolerance and are living in climates that are currently cooler than their physiological optima, so that warming may even enhance their fitness. Available thermal tolerance data for several vertebrate taxa exhibit similar patterns, suggesting that these results are general for terrestrial ectotherms. Our analyses imply that, in the absence of ameliorating factors such as migration and adaptation, the greatest extinction risks from global warming may be in the tropics, where biological diversity is also greatest.

2,996 citations

Journal ArticleDOI
12 Apr 2012-Nature
TL;DR: It is argued that nascent fungal infections will cause increasing attrition of biodiversity, with wider implications for human and ecosystem health, unless steps are taken to tighten biosecurity worldwide.
Abstract: The past two decades have seen an increasing number of virulent infectious diseases in natural populations and managed landscapes. In both animals and plants, an unprecedented number of fungal and fungal-like diseases have recently caused some of the most severe die-offs and extinctions ever witnessed in wild species, and are jeopardizing food security. Human activity is intensifying fungal disease dispersal by modifying natural environments and thus creating new opportunities for evolution. We argue that nascent fungal infections will cause increasing attrition of biodiversity, with wider implications for human and ecosystem health, unless steps are taken to tighten biosecurity worldwide.

2,408 citations

Journal ArticleDOI
TL;DR: It is concluded that in order to reliably predict the effects of GEC on community and ecosystem processes, the greatest single challenge will be to determine how biotic and abiotic context alters the direction and magnitude of G EC effects on biotic interactions.
Abstract: The main drivers of global environmental change (CO2 enrichment, nitrogen deposition, climate, biotic invasions and land use) cause extinctions and alter species distributions, and recent evidence shows that they exert pervasive impacts on various antagonistic and mutualistic interactions among species. In this review, we synthesize data from 688 published studies to show that these drivers often alter competitive interactions among plants and animals, exert multitrophic effects on the decomposer food web, increase intensity of pathogen infection, weaken mutualisms involving plants, and enhance herbivory while having variable effects on predation. A recurrent finding is that there is substantial variability among studies in both the magnitude and direction of effects of any given GEC driver on any given type of biotic interaction. Further, we show that higher order effects among multiple drivers acting simultaneously create challenges in predicting future responses to global environmental change, and that extrapolating these complex impacts across entire networks of species interactions yields unanticipated effects on ecosystems. Finally, we conclude that in order to reliably predict the effects of GEC on community and ecosystem processes, the greatest single challenge will be to determine how biotic and abiotic context alters the direction and magnitude of GEC effects on biotic interactions.

2,070 citations