scispace - formally typeset
Search or ask a question
Author

Andrew B. Pun

Bio: Andrew B. Pun is an academic researcher from Columbia University. The author has contributed to research in topics: Singlet fission & Photon upconversion. The author has an hindex of 21, co-authored 34 publications receiving 1879 citations. Previous affiliations of Andrew B. Pun include Lawrence Berkeley National Laboratory & University of California, Berkeley.

Papers
More filters
Journal ArticleDOI
16 Jan 2019-Nature
TL;DR: Various photoredox transformations under infrared radiation are demonstrated by utilizing the photophysical process of triplet fusion upconversion, a mechanism by which two low-energy photons are converted into a higher-energy photon, applicable to a wide range ofPhotoredox reactions.
Abstract: Recent advances in photoredox catalysis have made it possible to achieve various challenging synthetic transformations, polymerizations and surface modifications1-3. All of these reactions require ultraviolet- or visible-light stimuli; however, the use of visible-light irradiation has intrinsic challenges. For example, the penetration of visible light through most reaction media is very low, leading to problems in large-scale reactions. Moreover, reactants can compete with photocatalysts for the absorption of incident light, limiting the scope of the reactions. These problems can be overcome by the use of near-infrared light, which has a much higher penetration depth through various media, notably biological tissue4. Here we demonstrate various photoredox transformations under infrared radiation by utilizing the photophysical process of triplet fusion upconversion, a mechanism by which two low-energy photons are converted into a higher-energy photon. We show that this is a general strategy applicable to a wide range of photoredox reactions. We tune the upconversion components to adjust the output light, accessing both orange light and blue light from low-energy infrared light, by pairwise manipulation of the sensitizer and annihilator. We further demonstrate that the annihilator itself can be used as a photocatalyst, thus simplifying the reaction. This approach enables catalysis of high-energy transformations through several opaque barriers using low-energy infrared light.

365 citations

Journal ArticleDOI
TL;DR: In this paper, triplet photosensitization was used to demonstrate intramolecular singlet fission (iSF) with triplet yields approaching 200% per absorbed photon in a series of bipentacenes.
Abstract: Singlet fission (SF) has the potential to significantly enhance the photocurrent in single-junction solar cells and thus raise the power conversion efficiency from the Shockley–Queisser limit of 33% to 44%. Until now, quantitative SF yield at room temperature has been observed only in crystalline solids or aggregates of oligoacenes. Here, we employ transient absorption spectroscopy, ultrafast photoluminescence spectroscopy, and triplet photosensitization to demonstrate intramolecular singlet fission (iSF) with triplet yields approaching 200% per absorbed photon in a series of bipentacenes. Crucially, in dilute solution of these systems, SF does not depend on intermolecular interactions. Instead, SF is an intrinsic property of the molecules, with both the fission rate and resulting triplet lifetime determined by the degree of electronic coupling between covalently linked pentacene molecules. We found that the triplet pair lifetime can be as short as 0.5 ns but can be extended up to 270 ns.

311 citations

Journal ArticleDOI
TL;DR: In this article, the growth of oriented thin films of a tetrathiafulvalene-based COF (TTF-COF) and its tunable doping was reported.
Abstract: Despite the high charge-carrier mobility in covalent organic frameworks (COFs), the low intrinsic conductivity and poor solution processability still impose a great challenge for their applications in flexible electronics. We report the growth of oriented thin films of a tetrathiafulvalene-based COF (TTF-COF) and its tunable doping. The porous structure of the crystalline TTF-COF thin film allows the diffusion of dopants such as I2 and tetracyanoquinodimethane (TCNQ) for redox reactions, while the closely packed 2D grid sheets facilitate the cross-layer delocalization of thus-formed TTF radical cations to generate more conductive mixed-valence TTF species, as is verified by UV-vis-NIR and electron paramagnetic resonance spectra. Conductivity as high as 0.28 S m−1 is observed for the doped COF thin films, which is three orders of magnitude higher than that of the pristine film and is among the highest for COF materials.

265 citations

Journal ArticleDOI
TL;DR: It is established that iSF can occur via a direct coupling mechanism that is independent of CT states, and it is shown that a near-degeneracy in electronic state energies induced by vibronic coupling to intramolecular modes of the covalent dimer allows for strong mixing between the correlated triplet pair state and the local excitonic state, despite weak direct coupling.
Abstract: Interest in materials that undergo singlet fission (SF) has been catalyzed by the potential to exceed the Shockley–Queisser limit of solar power conversion efficiency. In conventional materials, the mechanism of SF is an intermolecular process (xSF), which is mediated by charge transfer (CT) states and depends sensitively on crystal packing or molecular collisions. In contrast, recently reported covalently coupled pentacenes yield ∼2 triplets per photon absorbed in individual molecules: the hallmark of intramolecular singlet fission (iSF). However, the mechanism of iSF is unclear. Here, using multireference electronic structure calculations and transient absorption spectroscopy, we establish that iSF can occur via a direct coupling mechanism that is independent of CT states. We show that a near-degeneracy in electronic state energies induced by vibronic coupling to intramolecular modes of the covalent dimer allows for strong mixing between the correlated triplet pair state and the local excitonic state, d...

170 citations

Journal ArticleDOI
TL;DR: Using transient absorption spectroscopy to investigate photophysics in pentacene dimers, it is found that homoconjugated dimer display desirable excited-state dynamics, with significantly reduced recombination rates as compared to conjugated dimers with similar singlet fission rates.
Abstract: We have designed a series of pentacene dimers separated by homoconjugated or nonconjugated bridges that exhibit fast and efficient intramolecular singlet exciton fission (iSF). These materials are distinctive among reported iSF compounds because they exist in the unexplored regime of close spatial proximity but weak electronic coupling between the singlet exciton and triplet pair states. Using transient absorption spectroscopy to investigate photophysics in these molecules, we find that homoconjugated dimers display desirable excited-state dynamics, with significantly reduced recombination rates as compared to conjugated dimers with similar singlet fission rates. In addition, unlike conjugated dimers, the time constants for singlet fission are relatively insensitive to the interplanar angle between chromophores, since rotation about σ bonds negligibly affects the orbital overlap within the π-bonding network. In the nonconjugated dimer, where the iSF occurs with a time constant >10 ns, comparable to the fluorescence lifetime, we used electron spin resonance spectroscopy to unequivocally establish the formation of triplet-triplet multiexcitons and uncoupled triplet excitons through singlet fission. Together, these studies enable us to articulate the role of the conjugation motif in iSF.

140 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An overview of the quick development in TADF mechanisms, materials, and applications is presented, with a particular emphasis on their different types of metal-organic complexes, D-A molecules, and fullerenes.
Abstract: The design and characterization of thermally activated delayed fluorescence (TADF) materials for optoelectronic applications represents an active area of recent research in organoelectronics. Noble metal-free TADF molecules offer unique optical and electronic properties arising from the efficient transition and interconversion between the lowest singlet (S1) and triplet (T1) excited states. Their ability to harvest triplet excitons for fluorescence through facilitated reverse intersystem crossing (T1→S1) could directly impact their properties and performances, which is attractive for a wide variety of low-cost optoelectronic devices. TADF-based organic light-emitting diodes, oxygen, and temperature sensors show significantly upgraded device performances that are comparable to the ones of traditional rare-metal complexes. Here we present an overview of the quick development in TADF mechanisms, materials, and applications. Fundamental principles on design strategies of TADF materials and the common relationship between the molecular structures and optoelectronic properties for diverse research topics and a survey of recent progress in the development of TADF materials, with a particular emphasis on their different types of metal-organic complexes, D-A molecules, and fullerenes, are highlighted. The success in the breakthrough of the theoretical and technical challenges that arise in developing high-performance TADF materials may pave the way to shape the future of organoelectronics.

1,473 citations

Journal ArticleDOI
TL;DR: A comprehensive review of the COF field is targeted, providing a historic overview of the chemistry, the advances in the topology design and synthetic reactions, illustrate the structural features and diversities, and scrutinize the development and potential of various functions through elucidating structure-function correlations.
Abstract: Covalent organic frameworks (COFs) are a class of crystalline porous organic polymers with permanent porosity and highly ordered structures. Unlike other polymers, a significant feature of COFs is that they are structurally predesignable, synthetically controllable, and functionally manageable. In principle, the topological design diagram offers geometric guidance for the structural tiling of extended porous polygons, and the polycondensation reactions provide synthetic ways to construct the predesigned primary and high-order structures. Progress over the past decade in the chemistry of these two aspects undoubtedly established the base of the COF field. By virtue of the availability of organic units and the diversity of topologies and linkages, COFs have emerged as a new field of organic materials that offer a powerful molecular platform for complex structural design and tailor-made functional development. Here we target a comprehensive review of the COF field, provide a historic overview of the chemistry of the COF field, survey the advances in the topology design and synthetic reactions, illustrate the structural features and diversities, scrutinize the development and potential of various functions through elucidating structure-function correlations based on interactions with photons, electrons, holes, spins, ions, and molecules, discuss the key fundamental and challenging issues that need to be addressed, and predict the future directions from chemistry, physics, and materials perspectives.

1,447 citations

Journal ArticleDOI
Jianguo Mei1, Ying Diao1, Anthony L. Appleton1, Lei Fang1, Zhenan Bao1 
TL;DR: Some of the major milestones along the way are highlighted to provide a historical view of OFET development, introduce the integrated molecular design concepts and process engineering approaches that lead to the current success, and identify the challenges ahead to make OFETs applicable in real applications.
Abstract: The past couple of years have witnessed a remarkable burst in the development of organic field-effect transistors (OFETs), with a number of organic semiconductors surpassing the benchmark mobility of 10 cm2/(V s). In this perspective, we highlight some of the major milestones along the way to provide a historical view of OFET development, introduce the integrated molecular design concepts and process engineering approaches that lead to the current success, and identify the challenges ahead to make OFETs applicable in real applications.

1,216 citations

Journal ArticleDOI
TL;DR: Covalent organic frameworks (COFs) are a class of crystalline porous polymer that allows the atomically precise integration of organic units into extended structures with periodic skeletons and ordered nanopores as mentioned in this paper.
Abstract: Covalent organic frameworks (COFs) are a class of crystalline porous polymer that allows the atomically precise integration of organic units into extended structures with periodic skeletons and ordered nanopores. One important feature of COFs is that they are designable; that is, the geometry and dimensions of the building blocks can be controlled to direct the topological evolution of structural periodicity. The diversity of building blocks and covalent linkage topology schemes make COFs an emerging materials platform for structural control and functional design. Indeed, COF architectures offer confined molecular spaces for the interplay of photons, excitons, electrons, holes, ions and guest molecules, thereby exhibiting unique properties and functions. In this Review, we summarize the major progress in the field of COFs and recent achievements in developing new design principles and synthetic strategies. We highlight cutting-edge functional designs and identify fundamental issues that need to be addressed in conjunction with future research directions from chemistry, physics and materials perspectives. Covalent organic frameworks are crystalline porous polymers with precisely ordered polygon architectures. In this Review we summarize recent advances in the design principles and synthetic reactions, highlight the current status in structural construction and functionality design, and predict challenging issues and future directions.

1,190 citations

Journal ArticleDOI
TL;DR: Recent progress in the "bottom-up" chemical syntheses of structurally well-defined nanographenes, namely graphene molecules and GNRs are described.
Abstract: Nanographenes, or extended polycyclic aromatic hydrocarbons, have been attracting renewed and more widespread attention since the first experimental demonstration of graphene in 2004. However, the atomically precise fabrication of nanographenes has thus far been achieved only through synthetic organic chemistry. The precise synthesis of quasi-zero-dimensional nanographenes, i.e. graphene molecules, has witnessed rapid developments over the past few years, and these developments can be summarized in four categories: (1) non-conventional methods, (2) structures incorporating seven- or eight-membered rings, (3) selective heteroatom doping, and (4) direct edge functionalization. On the other hand, one-dimensional extension of the graphene molecules leads to the formation of graphene nanoribbons (GNRs) with high aspect ratios. The synthesis of structurally well-defined GNRs has been achieved by extending nanographene synthesis to longitudinally extended polymeric systems. Access to GNRs thus becomes possible through the solution-mediated or surface-assisted cyclodehydrogenation, or “graphitization,” of tailor-made polyphenylene precursors. In this review, we describe recent progress in the “bottom-up” chemical syntheses of structurally well-defined nanographenes, namely graphene molecules and GNRs.

1,031 citations