scispace - formally typeset
Search or ask a question
Author

Andrew Beng Jin Teoh

Bio: Andrew Beng Jin Teoh is an academic researcher from Yonsei University. The author has contributed to research in topics: Biometrics & Facial recognition system. The author has an hindex of 39, co-authored 242 publications receiving 6054 citations. Previous affiliations of Andrew Beng Jin Teoh include Multimedia University & Wuhan University.


Papers
More filters
Book
30 May 2013
TL;DR: This special issue includes eight original works that detail the further developments of ELMs in theories, applications, and hardware implementation.
Abstract: This special issue includes eight original works that detail the further developments of ELMs in theories, applications, and hardware implementation. In "Representational Learning with ELMs for Big Data," Liyanaarachchi Lekamalage Chamara Kasun, Hongming Zhou, Guang-Bin Huang, and Chi Man Vong propose using the ELM as an auto-encoder for learning feature representations using singular values. In "A Secure and Practical Mechanism for Outsourcing ELMs in Cloud Computing," Jiarun Lin, Jianping Yin, Zhiping Cai, Qiang Liu, Kuan Li, and Victor C.M. Leung propose a method for handling large data applications by outsourcing to the cloud that would dramatically reduce ELM training time. In "ELM-Guided Memetic Computation for Vehicle Routing," Liang Feng, Yew-Soon Ong, and Meng-Hiot Lim consider the ELM as an engine for automating the encapsulation of knowledge memes from past problem-solving experiences. In "ELMVIS: A Nonlinear Visualization Technique Using Random Permutations and ELMs," Anton Akusok, Amaury Lendasse, Rui Nian, and Yoan Miche propose an ELM method for data visualization based on random permutations to map original data and their corresponding visualization points. In "Combining ELMs with Random Projections," Paolo Gastaldo, Rodolfo Zunino, Erik Cambria, and Sergio Decherchi analyze the relationships between ELM feature-mapping schemas and the paradigm of random projections. In "Reduced ELMs for Causal Relation Extraction from Unstructured Text," Xuefeng Yang and Kezhi Mao propose combining ELMs with neuron selection to optimize the neural network architecture and improve the ELM ensemble's computational efficiency. In "A System for Signature Verification Based on Horizontal and Vertical Components in Hand Gestures," Beom-Seok Oh, Jehyoung Jeon, Kar-Ann Toh, Andrew Beng Jin Teoh, and Jaihie Kim propose a novel paradigm for hand signature biometry for touchless applications without the need for handheld devices. Finally, in "An Adaptive and Iterative Online Sequential ELM-Based Multi-Degree-of-Freedom Gesture Recognition System," Hanchao Yu, Yiqiang Chen, Junfa Liu, and Guang-Bin Huang propose an online sequential ELM-based efficient gesture recognition algorithm for touchless human-machine interaction.

705 citations

Journal ArticleDOI
TL;DR: The previously presented biometric-hash framework prescribes the integration of external randomness with user-specific biometrics, resulting in bitstring outputs with security characteristics comparable to cryptographic ciphers or hashes, which are explained in this paper as arising from the random multispace quantization of biometric and external random inputs.
Abstract: Biometric analysis for identity verification is becoming a widespread reality. Such implementations necessitate large-scale capture and storage of biometric data, which raises serious issues in terms of data privacy and (if such data is compromised) identity theft. These problems stem from the essential permanence of biometric data, which (unlike secret passwords or physical tokens) cannot be refreshed or reissued if compromised. Our previously presented biometric-hash framework prescribes the integration of external (password or token-derived) randomness with user-specific biometrics, resulting in bitstring outputs with security characteristics (i.e., noninvertibility) comparable to cryptographic ciphers or hashes. The resultant BioHashes are hence cancellable, i.e., straightforwardly revoked and reissued (via refreshed password or reissued token) if compromised. BioHashing furthermore enhances recognition effectiveness, which is explained in this paper as arising from the random multispace quantization (RMQ) of biometric and external random inputs

439 citations

Journal ArticleDOI
TL;DR: An insightful survey and comparison on keystroke dynamics biometrics research performed throughout the last three decades is provided, as well as offering suggestions and possible future research directions.
Abstract: Research on keystroke dynamics biometrics has been increasing, especially in the last decade. The main motivation behind this effort is due to the fact that keystroke dynamics biometrics is economical and can be easily integrated into the existing computer security systems with minimal alteration and user intervention. Numerous studies have been conducted in terms of data acquisition devices, feature representations, classification methods, experimental protocols, and evaluations. However, an up-to-date extensive survey and evaluation is not yet available. The objective of this paper is to provide an insightful survey and comparison on keystroke dynamics biometrics research performed throughout the last three decades, as well as offering suggestions and possible future research directions.

289 citations

Journal ArticleDOI
TL;DR: The quantised random projection ensemble based on the Johnson-Lindenstrauss Lemma is used to establish the mathematical foundation of BioHash, a form of cancellable biometrics which mixes a set of user-specific random vectors with biometric features and elucidate the characteristics of Bio hash in pattern recognition as well as security view points and propose new methods to rectify the stolen-token problem.
Abstract: Lately, the once powerful one-factor authentication which is based solely on either password, token or biometric approach, appears to be insufficient in addressing the challenges of identity frauds. For example, the sole biometric approach suffers from the privacy invasion and non-revocable issues. Passwords and tokens are easily forgotten and lost. To address these issues, the notion of cancellable biometrics was introduced to denote biometric templates that can be cancelled and replaced with the inclusion of another independent authentication factor. BioHash is a form of cancellable biometrics which mixes a set of user-specific random vectors with biometric features. In verification setting, BioHash is able to deliver extremely low error rates as compared to the sole biometric approach when a genuine token is used. However, this raises the possibility of two identity theft scenarios: (i) stolen-biometrics, in which an impostor possesses intercepted biometric data of sufficient high quality to be considered genuine and (ii) stolen-token, in which an impostor has access to the genuine token and used by the impostor to claim as the genuine user. We found that the recognition rate for the latter case is poorer. In this paper, the quantised random projection ensemble based on the Johnson-Lindenstrauss Lemma is used to establish the mathematical foundation of BioHash. Based on this model, we elucidate the characteristics of BioHash in pattern recognition as well as security view points and propose new methods to rectify the stolen-token problem.

230 citations

Journal ArticleDOI
TL;DR: The implementation details of PalmHashing are outlined, which offers several advantages over contemporary biometric approaches such as clear separation of the genuine-imposter populations and zero EER occurrences and its potentials in security-critical applications.
Abstract: We propose a novel cancelable biometric approach, known as PalmHashing, to solve the non-revocable biometric issue. The proposed method hashes palmprint templates with a set of pseudo-random keys to obtain a unique code called palmhash. The palmhash code can be stored in portable devices such tokens and smartcards for verification. Multiple sets of palmhash codes can be maintained in multiple applications. Thus the privacy and security of the applications can be greatly enhanced. When compromised, revocation can also be achieved via direct replacement of a new set of palmhash code. In addition, PalmHashing offers several advantages over contemporary biometric approaches such as clear separation of the genuine-imposter populations and zero EER occurrences. In this paper, we outline the implementation details of this method and also highlight its potentials in security-critical applications.

180 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A new learning algorithm called ELM is proposed for feedforward neural networks (SLFNs) which randomly chooses hidden nodes and analytically determines the output weights of SLFNs which tends to provide good generalization performance at extremely fast learning speed.
Abstract: It is clear that the learning speed of feedforward neural networks is in general far slower than required and it has been a major bottleneck in their applications for past decades. Two key reasons behind may be: (1) the slow gradient-based learning algorithms are extensively used to train neural networks, and (2) all the parameters of the networks are tuned iteratively by using such learning algorithms. Unlike these conventional implementations, this paper proposes a new learning algorithm called e xtreme l earning m achine (ELM) for s ingle-hidden l ayer f eedforward neural n etworks (SLFNs) which randomly chooses hidden nodes and analytically determines the output weights of SLFNs. In theory, this algorithm tends to provide good generalization performance at extremely fast learning speed. The experimental results based on a few artificial and real benchmark function approximation and classification problems including very large complex applications show that the new algorithm can produce good generalization performance in most cases and can learn thousands of times faster than conventional popular learning algorithms for feedforward neural networks. 1

10,217 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Proceedings ArticleDOI
25 Jul 2004
TL;DR: A new learning algorithm called extreme learning machine (ELM) for single-hidden layer feedforward neural networks (SLFNs) which randomly chooses the input weights and analytically determines the output weights of SLFNs is proposed.
Abstract: It is clear that the learning speed of feedforward neural networks is in general far slower than required and it has been a major bottleneck in their applications for past decades. Two key reasons behind may be: 1) the slow gradient-based learning algorithms are extensively used to train neural networks, and 2) all the parameters of the networks are tuned iteratively by using such learning algorithms. Unlike these traditional implementations, this paper proposes a new learning algorithm called extreme learning machine (ELM) for single-hidden layer feedforward neural networks (SLFNs) which randomly chooses the input weights and analytically determines the output weights of SLFNs. In theory, this algorithm tends to provide the best generalization performance at extremely fast learning speed. The experimental results based on real-world benchmarking function approximation and classification problems including large complex applications show that the new algorithm can produce best generalization performance in some cases and can learn much faster than traditional popular learning algorithms for feedforward neural networks.

3,643 citations

01 Jan 2004
TL;DR: Comprehensive and up-to-date, this book includes essential topics that either reflect practical significance or are of theoretical importance and describes numerous important application areas such as image based rendering and digital libraries.
Abstract: From the Publisher: The accessible presentation of this book gives both a general view of the entire computer vision enterprise and also offers sufficient detail to be able to build useful applications. Users learn techniques that have proven to be useful by first-hand experience and a wide range of mathematical methods. A CD-ROM with every copy of the text contains source code for programming practice, color images, and illustrative movies. Comprehensive and up-to-date, this book includes essential topics that either reflect practical significance or are of theoretical importance. Topics are discussed in substantial and increasing depth. Application surveys describe numerous important application areas such as image based rendering and digital libraries. Many important algorithms broken down and illustrated in pseudo code. Appropriate for use by engineers as a comprehensive reference to the computer vision enterprise.

3,627 citations