scispace - formally typeset
Search or ask a question
Author

Andrew Carlson

Other affiliations: Google, Carnegie Mellon University
Bio: Andrew Carlson is an academic researcher from University of Illinois at Urbana–Champaign. The author has contributed to research in topics: Transfer printing & Information extraction. The author has an hindex of 30, co-authored 43 publications receiving 7227 citations. Previous affiliations of Andrew Carlson include Google & Carnegie Mellon University.

Papers
More filters
Proceedings Article
11 Jul 2010
TL;DR: This work proposes an approach and a set of design principles for an intelligent computer agent that runs forever and describes a partial implementation of such a system that has already learned to extract a knowledge base containing over 242,000 beliefs.
Abstract: We consider here the problem of building a never-ending language learner; that is, an intelligent computer agent that runs forever and that each day must (1) extract, or read, information from the web to populate a growing structured knowledge base, and (2) learn to perform this task better than on the previous day In particular, we propose an approach and a set of design principles for such an agent, describe a partial implementation of such a system that has already learned to extract a knowledge base containing over 242,000 beliefs with an estimated precision of 74% after running for 67 days, and discuss lessons learned from this preliminary attempt to build a never-ending learning agent

2,010 citations

Journal ArticleDOI
30 May 2008-Science
TL;DR: A computational model is presented that predicts the functional magnetic resonance imaging (fMRI) neural activation associated with words for which fMRI data are not yet available, trained with a combination of data from a trillion-word text corpus and observed f MRI data associated with viewing several dozen concrete nouns.
Abstract: The question of how the human brain represents conceptual knowledge has been debated in many scientific fields. Brain imaging studies have shown that different spatial patterns of neural activation are associated with thinking about different semantic categories of pictures and words (for example, tools, buildings, and animals). We present a computational model that predicts the functional magnetic resonance imaging (fMRI) neural activation associated with words for which fMRI data are not yet available. This model is trained with a combination of data from a trillion-word text corpus and observed fMRI data associated with viewing several dozen concrete nouns. Once trained, the model predicts fMRI activation for thousands of other concrete nouns in the text corpus, with highly significant accuracies over the 60 nouns for which we currently have fMRI data.

1,204 citations

Journal ArticleDOI
TL;DR: This article summarizes recent advances in a variety of transfer printing techniques, ranging from the mechanics and materials aspects that govern their operation to engineering features of their use in systems with varying levels of complexity.
Abstract: Transfer printing represents a set of techniques for deterministic assembly of micro-and nanomaterials into spatially organized, functional arrangements with two and three-dimensional layouts. Such processes provide versatile routes not only to test structures and vehicles for scientific studies but also to high-performance, heterogeneously integrated functional systems, including those in flexible electronics, three-dimensional and/or curvilinear optoelectronics, and bio-integrated sensing and therapeutic devices. This article summarizes recent advances in a variety of transfer printing techniques, ranging from the mechanics and materials aspects that govern their operation to engineering features of their use in systems with varying levels of complexity. A concluding section presents perspectives on opportunities for basic and applied research, and on emerging use of these methods in high throughput, industrial-scale manufacturing.

737 citations

Proceedings ArticleDOI
04 Feb 2010
TL;DR: This paper characterize several ways in which the training of category and relation extractors can be coupled, and presents experimental results demonstrating significantly improved accuracy as a result.
Abstract: We consider the problem of semi-supervised learning to extract categories (e.g., academic fields, athletes) and relations (e.g., PlaysSport(athlete, sport)) from web pages, starting with a handful of labeled training examples of each category or relation, plus hundreds of millions of unlabeled web documents. Semi-supervised training using only a few labeled examples is typically unreliable because the learning task is underconstrained. This paper pursues the thesis that much greater accuracy can be achieved by further constraining the learning task, by coupling the semi-supervised training of many extractors for different categories and relations. We characterize several ways in which the training of category and relation extractors can be coupled, and present experimental results demonstrating significantly improved accuracy as a result.

462 citations

Journal ArticleDOI
TL;DR: Experimental and theoretical studies of pressure modulated adhesion between flat, stiff objects and elastomeric surfaces with sharp features of surface relief in optimized geometries show the strength of nonspecific adhesion can be switched by more than three orders of magnitude.
Abstract: Reversible control of adhesion is an important feature of many desired, existing, and potential systems, including climbing robots, medical tapes, and stamps for transfer printing. We present experimental and theoretical studies of pressure modulated adhesion between flat, stiff objects and elastomeric surfaces with sharp features of surface relief in optimized geometries. Here, the strength of nonspecific adhesion can be switched by more than three orders of magnitude, from strong to weak, in a reversible fashion. Implementing these concepts in advanced stamps for transfer printing enables versatile modes for deterministic assembly of solid materials in micro/nanostructured forms. Demonstrations in printed two- and three-dimensional collections of silicon platelets and membranes illustrate some capabilities. An unusual type of transistor that incorporates a printed gate electrode, an air gap dielectric, and an aligned array of single walled carbon nanotubes provides a device example.

411 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Posted Content
TL;DR: A scalable approach for semi-supervised learning on graph-structured data that is based on an efficient variant of convolutional neural networks which operate directly on graphs which outperforms related methods by a significant margin.
Abstract: We present a scalable approach for semi-supervised learning on graph-structured data that is based on an efficient variant of convolutional neural networks which operate directly on graphs. We motivate the choice of our convolutional architecture via a localized first-order approximation of spectral graph convolutions. Our model scales linearly in the number of graph edges and learns hidden layer representations that encode both local graph structure and features of nodes. In a number of experiments on citation networks and on a knowledge graph dataset we demonstrate that our approach outperforms related methods by a significant margin.

15,696 citations

Journal ArticleDOI
TL;DR: The meaning of the terms "method" and "method bias" are explored and whether method biases influence all measures equally are examined, and the evidence of the effects that method biases have on individual measures and on the covariation between different constructs is reviewed.
Abstract: Despite the concern that has been expressed about potential method biases, and the pervasiveness of research settings with the potential to produce them, there is disagreement about whether they really are a problem for researchers in the behavioral sciences. Therefore, the purpose of this review is to explore the current state of knowledge about method biases. First, we explore the meaning of the terms “method” and “method bias” and then we examine whether method biases influence all measures equally. Next, we review the evidence of the effects that method biases have on individual measures and on the covariation between different constructs. Following this, we evaluate the procedural and statistical remedies that have been used to control method biases and provide recommendations for minimizing method bias.

8,719 citations

01 Jan 2009
TL;DR: This report provides a general introduction to active learning and a survey of the literature, including a discussion of the scenarios in which queries can be formulated, and an overview of the query strategy frameworks proposed in the literature to date.
Abstract: The key idea behind active learning is that a machine learning algorithm can achieve greater accuracy with fewer training labels if it is allowed to choose the data from which it learns. An active learner may pose queries, usually in the form of unlabeled data instances to be labeled by an oracle (e.g., a human annotator). Active learning is well-motivated in many modern machine learning problems, where unlabeled data may be abundant or easily obtained, but labels are difficult, time-consuming, or expensive to obtain. This report provides a general introduction to active learning and a survey of the literature. This includes a discussion of the scenarios in which queries can be formulated, and an overview of the query strategy frameworks proposed in the literature to date. An analysis of the empirical and theoretical evidence for successful active learning, a summary of problem setting variants and practical issues, and a discussion of related topics in machine learning research are also presented.

5,227 citations

Journal ArticleDOI
TL;DR: This article provides a comprehensive overview of graph neural networks (GNNs) in data mining and machine learning fields and proposes a new taxonomy to divide the state-of-the-art GNNs into four categories, namely, recurrent GNNS, convolutional GNN’s, graph autoencoders, and spatial–temporal Gnns.
Abstract: Deep learning has revolutionized many machine learning tasks in recent years, ranging from image classification and video processing to speech recognition and natural language understanding. The data in these tasks are typically represented in the Euclidean space. However, there is an increasing number of applications, where data are generated from non-Euclidean domains and are represented as graphs with complex relationships and interdependency between objects. The complexity of graph data has imposed significant challenges on the existing machine learning algorithms. Recently, many studies on extending deep learning approaches for graph data have emerged. In this article, we provide a comprehensive overview of graph neural networks (GNNs) in data mining and machine learning fields. We propose a new taxonomy to divide the state-of-the-art GNNs into four categories, namely, recurrent GNNs, convolutional GNNs, graph autoencoders, and spatial–temporal GNNs. We further discuss the applications of GNNs across various domains and summarize the open-source codes, benchmark data sets, and model evaluation of GNNs. Finally, we propose potential research directions in this rapidly growing field.

4,584 citations