scispace - formally typeset
Search or ask a question
Author

Andrew D. L. Steven

Bio: Andrew D. L. Steven is an academic researcher from Commonwealth Scientific and Industrial Research Organisation. The author has contributed to research in topics: Blue carbon & Carbon sequestration. The author has an hindex of 24, co-authored 75 publications receiving 3753 citations. Previous affiliations of Andrew D. L. Steven include CSIRO Marine and Atmospheric Research & Environment Protection Authority.


Papers
More filters
Journal ArticleDOI
TL;DR: This assessment, the most comprehensive for any nation to-date, demonstrates the potential of conservation and restoration of VCE to underpin national policy development for reducing greenhouse gas emissions.
Abstract: Policies aiming to preserve vegetated coastal ecosystems (VCE; tidal marshes, mangroves and seagrasses) to mitigate greenhouse gas emissions require national assessments of blue carbon resources. Here, we present organic carbon (C) storage in VCE across Australian climate regions and estimate potential annual CO2 emission benefits of VCE conservation and restoration. Australia contributes 5–11% of the C stored in VCE globally (70–185 Tg C in aboveground biomass, and 1,055–1,540 Tg C in the upper 1 m of soils). Potential CO2 emissions from current VCE losses are estimated at 2.1–3.1 Tg CO2-e yr-1, increasing annual CO2 emissions from land use change in Australia by 12–21%. This assessment, the most comprehensive for any nation to-date, demonstrates the potential of conservation and restoration of VCE to underpin national policy development for reducing greenhouse gas emissions. Policies aiming to preserve vegetated coastal ecosystems (VCE) to mitigate greenhouse gas emissions require national assessments of blue carbon resources. Here the authors assessed organic carbon storage in VCE across Australian and the potential annual CO2 emission benefits of VCE conservation and find that Australia contributes substantially the carbon stored in VCE globally.

1,462 citations

Journal ArticleDOI
TL;DR: The ENCORE experiment investigated responses of coral reef organisms and processes to controlled additions of dissolved inorganic nitrogen and phosphorus on an offshore reef at the southern end of the Great Barrier Reef, Australia, and showed that reef organism and processes investigated in situ were impacted by elevated nutrients.

476 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present global baseline estimates of mangrove soil C stocks enabling countries to begin to assess their manglove soil C stock and the emissions that might arise from manglobve deforestation.
Abstract: This research presents global baseline estimates of mangrove soil C stocks enabling countries to begin to assess their mangrove soil C stocks and the emissions that might arise from mangrove deforestation.

374 citations

Journal ArticleDOI
TL;DR: It is concluded that macroalgal communities have the potential to make ecologically meaningful contributions toward global blue carbon sequestration, as donors, but given that the fate of detached Macroalgal biomass remains unclear, further research is needed to quantify this contribution.
Abstract: Macroalgal communities in Australia and around the world store vast quantities of carbon in their living biomass, but their prevalence of growing on hard substrata means that they have limited capacity to act as long-term carbon sinks. Unlike other coastal blue carbon habitats such as seagrasses, saltmarshes and mangroves, they do not develop their own organic-rich sediments, but may instead act as a rich carbon source and make significant contributions in the form of detritus to sedimentary habitats by acting as a “carbon donor” to “receiver sites” where organic material accumulates. The potential for storage of this donated carbon however, is dependent on the decay rate during transport and the burial efficiency at receiver sites. To better understand the potential contribution of macroalgal communities to coastal blue carbon budgets, a comprehensive literature search was conducted using key words, including carbon sequestration, macroalgal distribution, abundance and productivity to provide an estimation of the total amount of carbon stored in temperate Australian macroalgae. Our most conservative calculations estimate 109.9 Tg C is stored in living macroalgal biomass of temperate Australia, using a coastal area covering 249,697 km2. Estimates derived for tropical and subtropical regions contributed an additional 23.2 Tg C. By extending the search to include global studies we provide a broader context and rationale for the study, contributing to the global aspects of the review. In addition, we discuss the potential role of calcium carbonate-containing macroalgae, consider the dynamic nature of macroalgal populations in the context of climate change, and identify the knowledge gaps that once addressed will enable robust quantification of macroalgae in marine biogeochemical cycling of carbon. We conclude that macroalgal communities have the potential to make ecologically meaningful contributions toward global blue carbon sequestration, as donors, but given that the fate of detached macroalgal biomass remains unclear, further research is needed to quantify this contribution.

144 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a framework to assess the relative risk of CO2 emissions from degraded soils, thereby supporting inclusion of soil organic carbon (Corg) into blue carbon projects and establishing a means to prioritize management for their carbon values.
Abstract: “Blue carbon” ecosystems, which include tidal marshes, mangrove forests, and seagrass meadows, have large stocks of organic carbon (Corg) in their soils These carbon stocks are vulnerable to decomposition and – if degraded – can be released to the atmosphere in the form of CO2 We present a framework to help assess the relative risk of CO2 emissions from degraded soils, thereby supporting inclusion of soil Corg into blue carbon projects and establishing a means to prioritize management for their carbon values Assessing the risk of CO2 emissions after various kinds of disturbances can be accomplished through knowledge of both the size of the soil Corg stock at a site and the likelihood that the soil Corg will decompose to CO2

137 citations


Cited by
More filters
Journal ArticleDOI
27 Jul 2001-Science
TL;DR: Paleoecological, archaeological, and historical data show that time lags of decades to centuries occurred between the onset of overfishing and consequent changes in ecological communities, because unfished species of similar trophic level assumed the ecological roles of over-fished species until they too were overfished or died of epidemic diseases related to overcrowding as mentioned in this paper.
Abstract: Ecological extinction caused by overfishing precedes all other pervasive human disturbance to coastal ecosystems, including pollution, degradation of water quality, and anthropogenic climate change. Historical abundances of large consumer species were fantastically large in comparison with recent observations. Paleoecological, archaeological, and historical data show that time lags of decades to centuries occurred between the onset of overfishing and consequent changes in ecological communities, because unfished species of similar trophic level assumed the ecological roles of overfished species until they too were overfished or died of epidemic diseases related to overcrowding. Retrospective data not only help to clarify underlying causes and rates of ecological change, but they also demonstrate achievable goals for restoration and management of coastal ecosystems that could not even be contemplated based on the limited perspective of recent observations alone.

5,411 citations

Journal ArticleDOI
TL;DR: This paper reviews and evaluates the current state of knowledge on the direct effects of terrestrial runoff on hard coral colonies, coral reproduction and recruitment, and organisms that interact with coral populations and summarises geographic and biological factors that determine local and regional levels of resistance and resilience to degradation.

1,913 citations

Journal ArticleDOI
TL;DR: In this article, a global assessment of the effects of inorganic nitrogen pollution in aquatic ecosystems is presented, with detailed multi-scale data, and three major environmental problems: (1) increasing the concentration of hydrogen ions in freshwater ecosystems without much acid-neutralizing capacity, resulting in acidification of those systems; (2) stimulating or enhancing the development, maintenance and proliferation of primary producers, leading to eutrophication of aquatic ecosystems; (3) reaching toxic levels that impair the ability of aquatic animals to survive, grow and reproduce.

1,753 citations