scispace - formally typeset
Search or ask a question
Author

Andrew Doherty

Bio: Andrew Doherty is an academic researcher from Queen's University Belfast. The author has contributed to research in topics: Ionic liquid & Cyclic voltammetry. The author has an hindex of 25, co-authored 66 publications receiving 1399 citations. Previous affiliations of Andrew Doherty include University of Newcastle & Dublin City University.


Papers
More filters
Journal ArticleDOI
TL;DR: Densely packed interfacial nanoparticle films form spontaneously when aqueous Ag colloid is shaken with CH2Cl2 in the presence of a "promoter" such as 10(-4) mol dm(-3) tetrabutylammonium nitrate, which induces rapid self-assembly of the nanoparticles at the liquid/liquid interface without adsorbing onto their surfaces.
Abstract: Densely packed interfacial nanoparticle films form spontaneously when aqueous Ag colloid is shaken with CH2Cl2 in the presence of a “promoter” such as 10–4 mol dm–3 tetrabutylammonium nitrate (TBA+NO3–), which induces rapid self-assembly of the nanoparticles at the liquid/liquid interface without adsorbing onto their surfaces. The particles within these reflective, metal-like liquid films (MeLLFs) are optically coupled and give strong SERS enhancement, similar to that obtained for the same colloid aggregated with optimized concentration of metal salt. However, unlike aggregated colloids their structure means they do not sediment out of solution so they give SERS spectra that are stable for >20 h) and have good uniformity (relative standard deviation in absolute intensity over 1 mm2 array of 25 points was 1.1%). Since the films lie at the aqueous/organic interface they are open to adsorption of analytes from either of the phases and can be probed in situ to detect both water- and nonwater-soluble analytes....

90 citations

Journal ArticleDOI
TL;DR: The long-time self-diffusion coefficients of Triton X-100 micelles have been determined as a function of surfactant and electrolyte concentrations using rotating disk electrode voltammetry in conju... as discussed by the authors.
Abstract: The long-time self-diffusion coefficients of Triton X-100 micelles have been determined as a function of surfactant and electrolyte concentrations using rotating disk electrode voltammetry in conju...

70 citations

Journal ArticleDOI
TL;DR: The electrochemical reduction of benzaldehyde at Pt microelectrodes in 1-butyl-1-methyl pyrrolidinium triflimide ([Bmpyr][NTF 2 ] room temperature ionic liquid is reported in this article.

69 citations

Journal ArticleDOI
TL;DR: In this article, a microelectrode chronoamperometry of ferrocene oxidation in 1-butyl-3-methylimidazolium triflimide room temperature ionic liquid is described.

64 citations

Journal ArticleDOI
TL;DR: In this paper, an electrocatalytic polymer [Os(bipy)2(PVP)10Cl]Cl, where bipy = 2,2′-bipyridyl and PVP = poly(4-vinylpyridine), was used to modify glassy carbon for use in planar flow cells and conventional electrochemical cells for the reductive electrochemical detection of nitrite.

61 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A review of the physics of small volumes (nanoliters) of fluids is presented, as parametrized by a series of dimensionless numbers expressing the relative importance of various physical phenomena as mentioned in this paper.
Abstract: Microfabricated integrated circuits revolutionized computation by vastly reducing the space, labor, and time required for calculations. Microfluidic systems hold similar promise for the large-scale automation of chemistry and biology, suggesting the possibility of numerous experiments performed rapidly and in parallel, while consuming little reagent. While it is too early to tell whether such a vision will be realized, significant progress has been achieved, and various applications of significant scientific and practical interest have been developed. Here a review of the physics of small volumes (nanoliters) of fluids is presented, as parametrized by a series of dimensionless numbers expressing the relative importance of various physical phenomena. Specifically, this review explores the Reynolds number Re, addressing inertial effects; the Peclet number Pe, which concerns convective and diffusive transport; the capillary number Ca expressing the importance of interfacial tension; the Deborah, Weissenberg, and elasticity numbers De, Wi, and El, describing elastic effects due to deformable microstructural elements like polymers; the Grashof and Rayleigh numbers Gr and Ra, describing density-driven flows; and the Knudsen number, describing the importance of noncontinuum molecular effects. Furthermore, the long-range nature of viscous flows and the small device dimensions inherent in microfluidics mean that the influence of boundaries is typically significant. A variety of strategies have been developed to manipulate fluids by exploiting boundary effects; among these are electrokinetic effects, acoustic streaming, and fluid-structure interactions. The goal is to describe the physics behind the rich variety of fluid phenomena occurring on the nanoliter scale using simple scaling arguments, with the hopes of developing an intuitive sense for this occasionally counterintuitive world.

4,044 citations

Journal ArticleDOI
28 Jan 2020-ACS Nano
TL;DR: Prominent authors from all over the world joined efforts to summarize the current state-of-the-art in understanding and using SERS, as well as to propose what can be expected in the near future, in terms of research, applications, and technological development.
Abstract: The discovery of the enhancement of Raman scattering by molecules adsorbed on nanostructured metal surfaces is a landmark in the history of spectroscopic and analytical techniques. Significant experimental and theoretical effort has been directed toward understanding the surface-enhanced Raman scattering (SERS) effect and demonstrating its potential in various types of ultrasensitive sensing applications in a wide variety of fields. In the 45 years since its discovery, SERS has blossomed into a rich area of research and technology, but additional efforts are still needed before it can be routinely used analytically and in commercial products. In this Review, prominent authors from around the world joined together to summarize the state of the art in understanding and using SERS and to predict what can be expected in the near future in terms of research, applications, and technological development. This Review is dedicated to SERS pioneer and our coauthor, the late Prof. Richard Van Duyne, whom we lost during the preparation of this article.

1,768 citations

Journal ArticleDOI
TL;DR: This review comprises the main characteristics of O2(•-) followed by generation methods, and its potential applications including the destruction of hazardous chemicals, synthesis of organic compounds, and many other applications are highlighted.
Abstract: Superoxide ion (O2•–) is of great significance as a radical species implicated in diverse chemical and biological systems. However, the chemistry knowledge of O2•– is rather scarce. In addition, numerous studies on O2•– were conducted within the latter half of the 20th century. Therefore, the current advancement in technology and instrumentation will certainly provide better insights into mechanisms and products of O2•– reactions and thus will result in new findings. This review emphasizes the state-of-the-art research on O2•– so as to enable researchers to venture into future research. It comprises the main characteristics of O2•– followed by generation methods. The reaction types of O2•– are reviewed, and its potential applications including the destruction of hazardous chemicals, synthesis of organic compounds, and many other applications are highlighted. The O2•– environmental chemistry is also discussed. The detection methods of O2•– are categorized and elaborated. Special attention is given to the f...

1,356 citations

Journal ArticleDOI
TL;DR: One of the advantages of RTILs as compared to their high-temperature molten salt (HTMS) “sister-systems” is that the dissolved molecules are not imbedded in a harsh high temperature environment which could be destructive for many classes of fragile (organic) molecules.
Abstract: Until recently, “room-temperature” (<100–150 °C) liquid-state electrochemistry was mostly electrochemistry of diluted electrolytes(1)–(4) where dissolved salt ions were surrounded by a considerable amount of solvent molecules. Highly concentrated liquid electrolytes were mostly considered in the narrow (albeit important) niche of high-temperature electrochemistry of molten inorganic salts(5-9) and in the even narrower niche of “first-generation” room temperature ionic liquids, RTILs (such as chloro-aluminates and alkylammonium nitrates).(10-14) The situation has changed dramatically in the 2000s after the discovery of new moisture- and temperature-stable RTILs.(15, 16) These days, the “later generation” RTILs attracted wide attention within the electrochemical community.(17-31) Indeed, RTILs, as a class of compounds, possess a unique combination of properties (high charge density, electrochemical stability, low/negligible volatility, tunable polarity, etc.) that make them very attractive substances from fundamental and application points of view.(32-38) Most importantly, they can mix with each other in “cocktails” of one’s choice to acquire the desired properties (e.g., wider temperature range of the liquid phase(39, 40)) and can serve as almost “universal” solvents.(37, 41, 42) It is worth noting here one of the advantages of RTILs as compared to their high-temperature molten salt (HTMS)(43) “sister-systems”.(44) In RTILs the dissolved molecules are not imbedded in a harsh high temperature environment which could be destructive for many classes of fragile (organic) molecules.

1,076 citations