scispace - formally typeset
Search or ask a question
Author

Andrew F. Hart

Other affiliations: Jet Propulsion Laboratory
Bio: Andrew F. Hart is an academic researcher from California Institute of Technology. The author has contributed to research in topics: Climate model & Cloud computing. The author has an hindex of 11, co-authored 28 publications receiving 359 citations. Previous affiliations of Andrew F. Hart include Jet Propulsion Laboratory.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the CORDEX-Africa regional climate model (RCM) hindcast experiment is evaluated for model skill and systematic biases for month-mean precipitation, mean (TAVG), maximum (TMAX) and minimum (TMIN) surface air temperatures, and cloudiness from the CARM experiment.
Abstract: Monthly-mean precipitation, mean (TAVG), maximum (TMAX) and minimum (TMIN) surface air temperatures, and cloudiness from the CORDEX-Africa regional climate model (RCM) hindcast experiment are evaluated for model skill and systematic biases. All RCMs simulate basic climatological features of these variables reasonably, but systematic biases also occur across these models. All RCMs show higher fidelity in simulating precipitation for the west part of Africa than for the east part, and for the tropics than for northern Sahara. Interannual variation in the wet season rainfall is better simulated for the western Sahel than for the Ethiopian Highlands. RCM skill is higher for TAVG and TMAX than for TMIN, and regionally, for the subtropics than for the tropics. RCM skill in simulating cloudiness is generally lower than for precipitation or temperatures. For all variables, multi-model ensemble (ENS) generally outperforms individual models included in ENS. An overarching conclusion in this study is that some model biases vary systematically for regions, variables, and metrics, posing difficulties in defining a single representative index to measure model fidelity, especially for constructing ENS. This is an important concern in climate change impact assessment studies because most assessment models are run for specific regions/sectors with forcing data derived from model outputs. Thus, model evaluation and ENS construction must be performed separately for regions, variables, and metrics as required by specific analysis and/or assessments. Evaluations using multiple reference datasets reveal that cross-examination, quality control, and uncertainty estimates of reference data are crucial in model evaluations.

171 citations

Journal ArticleDOI
TL;DR: This article evaluated surface air temperature, precipitation, and insolation over the conterminous United States region from the North American Regional Climate Change Assessment Program (NARCCAP) regional climate model hindcast study using the Jet Propulsion Laboratory (JPL) Regional Climate Model Evaluation System (RCMES).
Abstract: Surface air temperature, precipitation, and insolation over the conterminous United States region from the North American Regional Climate Change Assessment Program (NARCCAP) regional climate model (RCM) hindcast study are evaluated using the Jet Propulsion Laboratory (JPL) Regional Climate Model Evaluation System (RCMES). All RCMs reasonably simulate the observed climatology of these variables. RCM skill varies more widely for the magnitude of spatial variability than the pattern. The multimodel ensemble is among the best performers for all these variables. Systematic biases occur across these RCMs for the annual means, with warm biases over the Great Plains (GP) and cold biases in the Atlantic and the Gulf of Mexico (GM) coastal regions. Wet biases in the Pacific Northwest and dry biases in the GM/southern Great Plains also occur in most RCMs. All RCMs suffer problems in simulating summer rainfall in the Arizona–New Mexico region. RCMs generally overestimate surface insolation, especially in the...

32 citations

Journal ArticleDOI
TL;DR: The results show that applying graph theory to this problem allows for the identification of features from infrared satellite data and the seamlessly identification in a precipitation rate satellite-based dataset, while innately handling the inherent complexity and non-linearity of mesoscale convective systems.
Abstract: Mesoscale convective systems are high impact convectively driven weather systems that contribute large amounts to the precipitation daily and monthly totals at various locations globally. As such, an understanding of the lifecycle, characteristics, frequency and seasonality of these convective features is important for several sectors and studies in climate studies, agricultural and hydrological studies, and disaster management. This study explores the applicability of graph theory to creating a fully automated algorithm for identifying mesoscale convective systems and determining their precipitation characteristics from satellite datasets. Our results show that applying graph theory to this problem allows for the identification of features from infrared satellite data and the seamlessly identification in a precipitation rate satellite-based dataset, while innately handling the inherent complexity and non-linearity of mesoscale convective systems.

30 citations

Journal ArticleDOI
TL;DR: An overview of some of climate science's big data problems and the technical solutions being developed to advance data publication, climate analytics as a service, and interoperability within the Earth System Grid Federation (ESGF), which is the primary cyberinfrastructure currently supporting global climate research activities.
Abstract: The knowledge we gain from research in climate science depends on the generation, dissemination, and analysis of high-quality data. This work comprises technical practice as well as social practice, both of which are distinguished by their massive scale and global reach. As a result, the amount of data involved in climate research is growing at an unprecedented rate. Some examples of the types of activities that increasingly require an improved cyberinfrastructure for dealing with large amounts of critical scientific data are climate model intercomparison (CMIP) experiments; the integration of observational data and climate reanalysis data with climate model outputs, as seen in the Observations for Model Intercomparison Projects (Obs4MIPs), Analysis for Model Intercomparison Projects (Ana4MIPs), and Collaborative Reanalysis Technical Environment-Intercomparison Project (CREATE-IP) activities; and the collaborative work of the Intergovernmental Panel on Climate Change (IPCC). This article provides an overview of some of climate science's big data problems and the technical solutions being developed to advance data publication, climate analytics as a service, and interoperability within the Earth System Grid Federation (ESGF), which is the primary cyberinfrastructure currently supporting global climate research activities.

25 citations

Proceedings ArticleDOI
19 Jul 2009
TL;DR: A reusable architecture and implementation framework for managing science processing pipelines for mission ground data systems is described, within the context of two current earth science missions: the Orbiting Carbon Observatory (OCO) and NPP Sounder PEATE projects.
Abstract: We describe a reusable architecture and implementation framework for managing science processing pipelines for mission ground data systems. Our system, dubbed ``PCS'', for Process Control System, improves upon an existing software component, the OODT Catalog and Archive (CAS), which has already supported the QuikSCAT, SeaWinds and AMT earth science missions. This paper focuses on PCS within the context of two current earth science missions: the Orbiting Carbon Observatory (OCO), and NPP Sounder PEATE projects.

22 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, an evaluation of the ERA-Interim-driven EURO-CORDEX regional climate model (RCM) ensemble is presented, focusing on near-surface air temperature and precipitation, and using the E-OBS data set as observational reference.
Abstract: . EURO-CORDEX is an international climate downscaling initiative that aims to provide high-resolution climate scenarios for Europe. Here an evaluation of the ERA-Interim-driven EURO-CORDEX regional climate model (RCM) ensemble is presented. The study documents the performance of the individual models in representing the basic spatiotemporal patterns of the European climate for the period 1989–2008. Model evaluation focuses on near-surface air temperature and precipitation, and uses the E-OBS data set as observational reference. The ensemble consists of 17 simulations carried out by seven different models at grid resolutions of 12 km (nine experiments) and 50 km (eight experiments). Several performance metrics computed from monthly and seasonal mean values are used to assess model performance over eight subdomains of the European continent. Results are compared to those for the ERA40-driven ENSEMBLES simulations. The analysis confirms the ability of RCMs to capture the basic features of the European climate, including its variability in space and time. But it also identifies nonnegligible deficiencies of the simulations for selected metrics, regions and seasons. Seasonally and regionally averaged temperature biases are mostly smaller than 1.5 °C, while precipitation biases are typically located in the ±40% range. Some bias characteristics, such as a predominant cold and wet bias in most seasons and over most parts of Europe and a warm and dry summer bias over southern and southeastern Europe reflect common model biases. For seasonal mean quantities averaged over large European subdomains, no clear benefit of an increased spatial resolution (12 vs. 50 km) can be identified. The bias ranges of the EURO-CORDEX ensemble mostly correspond to those of the ENSEMBLES simulations, but some improvements in model performance can be identified (e.g., a less pronounced southern European warm summer bias). The temperature bias spread across different configurations of one individual model can be of a similar magnitude as the spread across different models, demonstrating a strong influence of the specific choices in physical parameterizations and experimental setup on model performance. Based on a number of simply reproducible metrics, the present study quantifies the currently achievable accuracy of RCMs used for regional climate simulations over Europe and provides a quality standard for future model developments.

778 citations

Journal ArticleDOI
TL;DR: In this article, the Airborne Snow Observatory (ASO) used a coupled imaging spectrometer and scanning lidar, combined with distributed snow modeling, developed for the measurement of snow spectral albedo/broadband albedos and snow depth/SWE.

326 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a descriptive literature review and classification scheme for cloud computing research, which includes 205 refereed journal articles published since the inception of cloud computing and classify them into four main categories: technological issues, business issues, domains and applications, and conceptualizing cloud computing.
Abstract: We present a descriptive literature review and classification scheme for cloud computing research. This includes 205 refereed journal articles published since the inception of cloud computing research. The articles are classified based on a scheme that consists of four main categories: technological issues, business issues, domains and applications, and conceptualising cloud computing. The results show that although current research is still skewed towards technological issues, new research themes regarding social and organisational implications are emerging. This review provides a reference source and classification scheme for IS researchers interested in cloud computing, and to indicate under-researched areas as well as future directions.

240 citations

Book
01 Jan 2018
TL;DR: In this article, the main approaches including statistical downscaling, bias correction, and weather generators, along with their underlying assumptions, skill and limitations are presented, together with user context and technical background.
Abstract: Statistical downscaling and bias correction are becoming standard tools in climate impact studies. This book provides a comprehensive reference to widely-used approaches, and additionally covers the relevant user context and technical background, as well as a synthesis and guidelines for practitioners. It presents the main approaches including statistical downscaling, bias correction and weather generators, along with their underlying assumptions, skill and limitations. Relevant background information on user needs and observational and climate model uncertainties is complemented by concise introductions to the most important concepts in statistical and dynamical modelling. A substantial part is dedicated to the evaluation of regional climate projections and their value in different user contexts. Detailed guidelines for the application of downscaling and the use of downscaled information in practice complete the volume. Its modular approach makes the book accessible for developers and practitioners, graduate students and experienced researchers, as well as impact modellers and decision makers.

221 citations