scispace - formally typeset
Search or ask a question
Author

Andrew G. Geiser

Bio: Andrew G. Geiser is an academic researcher from National Institutes of Health. The author has contributed to research in topics: Transforming growth factor beta & Promoter. The author has an hindex of 17, co-authored 20 publications receiving 4051 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Pathological examination revealed an excessive inflammatory response with massive infiltration of lymphocytes and macrophages in many organs, but primarily in heart and lungs, which suggests a prominent role for TGF-beta 1 in homeostatic regulation of immune cell proliferation and extravasation into tissues.
Abstract: To delineate specific developmental roles of transforming growth factor beta 1 (TGF-beta 1) we have disrupted its cognate gene in mouse embryonic stem cells by homologous recombination to generate TGF-beta 1 null mice. These mice do not produce detectable amounts of either TGF-beta 1 RNA or protein. After normal growth for the first 2 weeks they develop a rapid wasting syndrome and die by 3-4 weeks of age. Pathological examination revealed an excessive inflammatory response with massive infiltration of lymphocytes and macrophages in many organs, but primarily in heart and lungs. Many lesions resembled those found in autoimmune disorders, graft-vs.-host disease, or certain viral diseases. This phenotype suggests a prominent role for TGF-beta 1 in homeostatic regulation of immune cell proliferation and extravasation into tissues.

1,923 citations

Journal ArticleDOI
24 Jun 1994-Science
TL;DR: An important role is suggested for maternal sources of TGF-beta 1 during development and, more generally, evidence for maternal rescue of targeted gene disruption in the fetus is provided.
Abstract: Maternal sources of transforming growth factor-beta 1 (TGF-beta 1) are shown here to contribute to the normal appearance and perinatal survival of TGF-beta 1 null newborn mice. Labeled TGF-beta 1 crossed the placenta and was recovered intact from various tissues after oral administration to mouse pups. TGF beta-1 protein was also detected in cells recovered from breast milk. In immunohistochemical analyses, TGF-beta 1 null embryos and null newborn pups born to TGF-beta 1 heterozygotes stained positive for TGF-beta 1, whereas those born to a null female were negative and had severe cardiac abnormalities. These results suggest an important role for maternal sources of TGF-beta 1 during development and, more generally, provide evidence for maternal rescue of targeted gene disruption in the fetus.

508 citations

Journal ArticleDOI
TL;DR: A significant role for TGF-beta in the response of the heart to injury is indicated, as shown by the results of immunohistochemical staining and Northern blot analysis of mRNA.
Abstract: TGF-β1 has been examined in the heart during myocardial infarction caused by ligation of the left coronary artery. Infracted and uninfected myocardium have been compared by immunohistochemical staining of TGF-β1 and by Northern blot analysis of mRNA. Normal ventricular myocytes are strongly stained by an antibody to TGF-β1. Progressive loss of staining of these myocytes begins within 1 hr after coronary ligation. However, by 24-48 hr after ligation, intense staining of myocytes at the margin of infracted areas is seen. Northern blots of infracted myocardium 48 hr after ligation show a 3to 4-fold increase in the principal 2.4 kb TGF-β1 mRNA; there is also a marked increase in a minor 1.9 kb transcript. In the same tissue samples, there is a 2-fold decrease in the mRNA for the glycolytic enzyme, glyceraldehyde-3-phosphate dehydrogenase. The results indicate a significant role for TGF-β in the response of the heart to injury.

219 citations

Journal Article
TL;DR: The results support the concept that TGF-beta 1 is an important naturally occurring immunosuppressive cytokine whose absence can lead to a systemic autoimmune disease.
Abstract: Mice bearing the TGF-beta 1 null mutation (-/-) develop lymphoid infiltrates in the heart, lungs, salivary glands, and other organs similar to those seen in the pseudolymphoma of Sjogren's Syndrome. We studied sera from -/- mice and found elevated Ab levels to dsDNA, ssDNA, and Sm ribonucleoprotein. No Abs to SSA/Ro or SSB/La and no IgM rheumatoid factor were found. Serum autoantibodies were predominately IgG and were specific as shown by ELISA inhibition studies. Antinuclear Ab patterns on Western blots varied from one mouse to the next, indicating a random process responsible for the diversity. Wild-type and heterozygote mice had no autoantibodies. Ig glomerular deposits were found in -/- mice, indicating that these autoantibodies may be pathogenic. Treatment of -/- mice with dexamethasone or TGF-beta 1 failed to suppress autoantibody production. These mice represent an overlap combining the autoimmune serology of SLE with the tissue infiltrates of SS. Our results support the concept that TGF-beta 1 is an important naturally occurring immunosuppressive cytokine whose absence can lead to a systemic autoimmune disease.

178 citations

Journal ArticleDOI
TL;DR: Altered regulation of MHC expression may be a critical step leading to the multifocal inflammation and wasting syndrome seen in the TGF-beta 1 null mouse, and potential applications for T GF-beta in the management of autoimmune disease, allograft rejection, and other problems associated with altered MHCexpression are suggested.
Abstract: The phenotype of the transforming growth factor beta 1 (TGF-beta 1) null mouse has been previously described and is characterized by inflammatory infiltrates in multiple organs leading to a wasting syndrome and death as early as 3 weeks after birth. Since this phenotype occurs in the absence of any detectable pathogen, potential autoimmune disease mechanisms were investigated. We examined major histocompatibility complex (MHC) mRNA expression in tissues of the TGF-beta 1 null mouse and found levels of both the class I and class II MHC mRNA elevated compared to normal or TGF-beta 1 heterozygous littermates. This elevated expression was seen prior to any evidence of inflammatory infiltrates, suggesting a causal relationship between increased MHC expression and activation of immune cell populations. Cell surface expression of MHC molecules was detected by immunohistochemistry and correlated well with mRNA levels. Expression of mRNA for interferon gamma and its receptor was unchanged at the ages when increased MHC expression became apparent. Down-regulation of class I MHC expression by TGF-beta 1 was also demonstrated in vitro in fibroblasts isolated from TGF-beta 1 null mice. These findings suggest that one natural function of TGF-beta 1 is to control expression of both MHC classes. Altered regulation of MHC expression may be a critical step leading to the multifocal inflammation and wasting syndrome seen in the TGF-beta 1 null mouse. These results suggest potential applications for TGF-beta in the management of autoimmune disease, allograft rejection, and other problems associated with altered MHC expression.

175 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The transforming growth factor beta (TGF-beta) family of growth factors control the development and homeostasis of most tissues in metazoan organisms and mutations in these pathways are the cause of various forms of human cancer and developmental disorders.
Abstract: The transforming growth factor beta (TGF-beta) family of growth factors control the development and homeostasis of most tissues in metazoan organisms. Work over the past few years has led to the elucidation of a TGF-beta signal transduction network. This network involves receptor serine/threonine kinases at the cell surface and their substrates, the SMAD proteins, which move into the nucleus, where they activate target gene transcription in association with DNA-binding partners. Distinct repertoires of receptors, SMAD proteins, and DNA-binding partners seemingly underlie, in a cell-specific manner, the multifunctional nature of TGF-beta and related factors. Mutations in these pathways are the cause of various forms of human cancer and developmental disorders.

7,710 citations

Journal ArticleDOI
TL;DR: Novel evidence is presented that conversion of naive peripheral CD4+CD25− T cells into anergic/suppressor cells that are CD25+, CD45RB−/low and intracellular CTLA-4+ can be achieved through costimulation with T cell receptors (TCRs) and transforming growth factor β (TGF-β).
Abstract: CD4+CD25+ regulatory T cells (Treg) are instrumental in the maintenance of immunological tolerance. One critical question is whether Treg can only be generated in the thymus or can differentiate from peripheral CD4+CD25− naive T cells. In this paper, we present novel evidence that conversion of naive peripheral CD4+CD25− T cells into anergic/suppressor cells that are CD25+, CD45RB−/low and intracellular CTLA-4+ can be achieved through costimulation with T cell receptors (TCRs) and transforming growth factor β (TGF-β). Although transcription factor Foxp3 has been shown recently to be associated with the development of Treg, the physiological inducers for Foxp3 gene expression remain a mystery. TGF-β induced Foxp3 gene expression in TCR-challenged CD4+CD25− naive T cells, which mediated their transition toward a regulatory T cell phenotype with potent immunosuppressive potential. These converted anergic/suppressor cells are not only unresponsive to TCR stimulation and produce neither T helper cell 1 nor T helper cell 2 cytokines but they also express TGF-β and inhibit normal T cell proliferation in vitro. More importantly, in an ovalbumin peptide TCR transgenic adoptive transfer model, TGF-β–converted transgenic CD4+CD25+ suppressor cells proliferated in response to immunization and inhibited antigen-specific naive CD4+ T cell expansion in vivo. Finally, in a murine asthma model, coadministration of these TGF-β–induced suppressor T cells prevented house dust mite–induced allergic pathogenesis in lungs.

4,669 citations

Journal ArticleDOI
TL;DR: Although the high-output NO pathway probably evolved to protect the host from infection, suppressive effects on lymphocyte proliferation and damage to other normal host cells confer upon NOS2 the same protective/destructive duality inherent in every other major component of the immune response.
Abstract: ▪ Abstract At the interface between the innate and adaptive immune systems lies the high-output isoform of nitric oxide synthase (NOS2 or iNOS). This remarkable molecular machine requires at least 17 binding reactions to assemble a functional dimer. Sustained catalysis results from the ability of NOS2 to attach calmodulin without dependence on elevated Ca2+. Expression of NOS2 in macrophages is controlled by cytokines and microbial products, primarily by transcriptional induction. NOS2 has been documented in macrophages from human, horse, cow, goat, sheep, rat, mouse, and chicken. Human NOS2 is most readily observed in monocytes or macrophages from patients with infectious or inflammatory diseases. Sustained production of NO endows macrophages with cytostatic or cytotoxic activity against viruses, bacteria, fungi, protozoa, helminths, and tumor cells. The antimicrobial and cytotoxic actions of NO are enhanced by other macrophage products such as acid, glutathione, cysteine, hydrogen peroxide, or superoxid...

4,027 citations

Journal ArticleDOI
01 Feb 2006-Immunity
TL;DR: The data indicate that, in the presence of IL-6, TGFbeta1 subverts Th1 and Th2 differentiation for the generation ofIL-17-producing T cells.

3,711 citations

Journal ArticleDOI
TL;DR: This review summarizes the results of expression studies that have been performed in rodents, pigs, and humans to localize growth factors and their receptors in skin wounds and reports on genetic studies addressing the functions of endogenous growth factors in the wound repair process.
Abstract: Werner, Sabine, and Richard Grose. Regulation of Wound Healing by Growth Factors and Cytokines. Physiol Rev 83: 835–870, 2003; 10.1152/physrev.00032.2002.—Cutaneous wound healing is a complex proce...

3,234 citations