scispace - formally typeset
Search or ask a question
Author

Andrew G. Tindle

Bio: Andrew G. Tindle is an academic researcher from Open University. The author has contributed to research in topics: Pegmatite & Mineralization (geology). The author has an hindex of 32, co-authored 108 publications receiving 11533 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a data bank containing over 600 high quality trace element analyses of granites from known settings was used to demonstrate using ORG-normalized geochemical patterns and element-SiO2 plots that most of these granite groups exhibit distinctive trace element characteristics.
Abstract: Granites may be subdivided according to their intrusive settings into four main groups—ocean ridge granites (ORG), volcanic arc granites (VAG), within plate granites (WPG) and collision granites (COLG)—and the granites within each group may be further subdivided according to their precise settings and petrological characteristics. Using a data bank containing over 600 high quality trace element analyses of granites from known settings, it can be demonstrated using ORG-normalized geochemical patterns and element-SiO2 plots that most of these granite groups exhibit distinctive trace element characteristics. Discrimination of ORG, VAG, WPG and syn-COLG is most effective in Rb-Y-Nb and Rb-Yb-Ta space, particularly on projections of Y-Nb, Yb-Ta, Rb-(Y + Nb) and Rb—(Yb + Ta). Discrimination boundaries, though drawn empirically, can be shown by geochemical modelling to have a theoretical basis in the different petrogenetic histories of the various granite groups. Post-collision granites present the main problem of tectonic classification, since their characteristics depend on the thickness and composition of the lithosphere involved in the collision event and on the precise timing and location of magmatism. Provided they are coupled with a consideration of geological constraints, however, studies of trace element compositions in granites can clearly help in theelucidation of post-Archaean tectonic settings.

7,144 citations

Journal ArticleDOI
TL;DR: The results of a systematic geochemical study of intermediate and acid intrusive rocks from a number of continent-continent collision zones of Phanerozoic age were reported in this paper.
Abstract: This paper reports the results of a systematic geochemical study of intermediate and acid intrusive rocks from a number of continent-continent collision zones of Phanerozoic age. Four groups of intrusions can be recognized, each associated with a particular stage in the tectonic evolution of a collision zone. Pre-collision calc-alkaline (volcanic-arc) intrusions which are mostly derived from mantle modified by a subduction component and which are characterized by selective enrichments in LIL elements. Syn-collision peraluminous intrusions (leucogranites) which may be derived from the hydrated bases of continental thrust sheets and which are characterized by high Rb/Zr and Ta/Nb and low K/Rb ratios. Late or post-collision calc-alkaline intrusions which may be derived from a mantle source but undergo extensive crustal contamination and can only be distinguished from volcanic-arc intrusions by their higher ratios of Ta/Hf and Ta/Zr. Post-collision alkaline intrusions which may be derived from mantle lithosphere beneath the collision zones and which carry high concentrations of both LIL and HFS elements. The geochemical evolution of crustal melts within groups (ii) and (iii) can be viewed in terms of the dehydration reactions, volatile transfer and transient geothermal gradients that result from thrust tectonics in the zone of collision.

1,289 citations

Journal ArticleDOI
TL;DR: In this article, the results from a second characterisation of the 91500 zircon, including data from electron probe microanalysis, laser ablation inductively coupled plasma-mass spectrometer (LA-ICP-MS), secondary ion mass spectrometry (SIMS), and laser fluorination analyses, were reported.
Abstract: This paper reports the results from a second characterisation of the 91500 zircon, including data from electron probe microanalysis, laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS), secondary ion mass spectrometry (SIMS) and laser fluorination analyses. The focus of this initiative was to establish the suitability of this large single zircon crystal for calibrating in situ analyses of the rare earth elements and oxygen isotopes, as well as to provide working values for key geochemical systems. In addition to extensive testing of the chemical and structural homogeneity of this sample, the occurrence of banding in 91500 in both backscattered electron and cathodoluminescence images is described in detail. Blind intercomparison data reported by both LA-ICP-MS and SIMS laboratories indicate that only small systematic differences exist between the data sets provided by these two techniques. Furthermore, the use of NIST SRM 610 glass as the calibrant for SIMS analyses was found to introduce little or no systematic error into the results for zircon. Based on both laser fluorination and SIMS data, zircon 91500 seems to be very well suited for calibrating in situ oxygen isotopic analyses.

1,131 citations

Journal ArticleDOI
TL;DR: In this paper, a multidisciplinary approach utilizing TIMS and laser ablation multicollector inductively coupled plasma mass spectrometry (LA-MC-ICPMS) isotope data, quantitative and qualitative EMP chemical analyses of monazite, and textural studies, assess the significance of Pb loss, older components, and continuous and episodic monazites growth in the generation of dispersed age data.

236 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a data bank containing over 600 high quality trace element analyses of granites from known settings was used to demonstrate using ORG-normalized geochemical patterns and element-SiO2 plots that most of these granite groups exhibit distinctive trace element characteristics.
Abstract: Granites may be subdivided according to their intrusive settings into four main groups—ocean ridge granites (ORG), volcanic arc granites (VAG), within plate granites (WPG) and collision granites (COLG)—and the granites within each group may be further subdivided according to their precise settings and petrological characteristics. Using a data bank containing over 600 high quality trace element analyses of granites from known settings, it can be demonstrated using ORG-normalized geochemical patterns and element-SiO2 plots that most of these granite groups exhibit distinctive trace element characteristics. Discrimination of ORG, VAG, WPG and syn-COLG is most effective in Rb-Y-Nb and Rb-Yb-Ta space, particularly on projections of Y-Nb, Yb-Ta, Rb-(Y + Nb) and Rb—(Yb + Ta). Discrimination boundaries, though drawn empirically, can be shown by geochemical modelling to have a theoretical basis in the different petrogenetic histories of the various granite groups. Post-collision granites present the main problem of tectonic classification, since their characteristics depend on the thickness and composition of the lithosphere involved in the collision event and on the precise timing and location of magmatism. Provided they are coupled with a consideration of geological constraints, however, studies of trace element compositions in granites can clearly help in theelucidation of post-Archaean tectonic settings.

7,144 citations

Journal ArticleDOI
TL;DR: A review of the geologic history of the Himalayan-Tibetan orogen suggests that at least 1400 km of north-south shortening has been absorbed by the orogen since the onset of the Indo-Asian collision at about 70 Ma as discussed by the authors.
Abstract: A review of the geologic history of the Himalayan-Tibetan orogen suggests that at least 1400 km of north-south shortening has been absorbed by the orogen since the onset of the Indo-Asian collision at about 70 Ma. Significant crustal shortening, which leads to eventual construction of the Cenozoic Tibetan plateau, began more or less synchronously in the Eocene (50–40 Ma) in the Tethyan Himalaya in the south, and in the Kunlun Shan and the Qilian Shan some 1000–1400 km in the north. The Paleozoic and Mesozoic tectonic histories in the Himalayan-Tibetan orogen exerted a strong control over the Cenozoic strain history and strain distribution. The presence of widespread Triassic flysch complex in the Songpan-Ganzi-Hoh Xil and the Qiangtang terranes can be spatially correlated with Cenozoic volcanism and thrusting in central Tibet. The marked difference in seismic properties of the crust and the upper mantle between southern and central Tibet is a manifestation of both Mesozoic and Cenozoic tectonics. The form...

4,494 citations

Journal ArticleDOI
TL;DR: A-type granites as mentioned in this paper were found to have high SiO2, Na2O+K2O, Fe/Mg, Ga/Al, Zr, Nb, Ga, Y and Ce, and low CaO and Sr.
Abstract: New analyses of 131 samples of A-type (alkaline or anorogenic) granites substantiate previously recognized chemical features, namely high SiO2, Na2O+K2O, Fe/Mg, Ga/Al, Zr, Nb, Ga, Y and Ce, and low CaO and Sr. Good discrimination can be obtained between A-type granites and most orogenic granites (M-, I and S-types) on plots employing Ga/Al, various major element ratios and Y, Ce, Nb and Zr. These discrimination diagrams are thought to be relatively insensitive to moderate degrees of alteration. A-type granites generally do not exhibit evidence of being strongly differentiated, and within individual suites can show a transition from strongly alkaline varieties toward subalkaline compositions. Highly fractionated, felsic I- and S-type granites can have Ga/Al ratios and some major and trace element values which overlap those of typical A-type granites. A-type granites probably result mainly from partial melting of F and/or Cl enriched dry, granulitic residue remaining in the lower crust after extraction of an orogenic granite. Such melts are only moderately and locally modified by metasomatism or crystal fractionation. A-type melts occurred world-wide throughout geological time in a variety of tectonic settings and do not necessarily indicate an anorogenic or rifting environment.

4,216 citations

Journal ArticleDOI
TL;DR: Barbarin et al. as mentioned in this paper used the modified alkali-lime index (MALI) and the aluminum saturation (ASI) for the classification of caledonian post-orogenic granites.
Abstract: This geochemical classification of granitic rocks is based upon three INTRODUCTION variables. These are FeO/(FeO + MgO) = Fe-number [or Although granitoids are the most abundant rock types FeO/(FeO + MgO) = Fe∗], the modified alkali–lime index in the continental crust, no single classification scheme (MALI) (Na2O + K2O – CaO) and the aluminum saturation has achieved widespread use. Part of the problem in index (ASI) [Al/(Ca – 1·67P + Na + K)]. The Fe-number granite classification is that the same mineral assemblage, (or Fe∗) distinguishes ferroan granitoids, which manifest strong iron quartz and feldspars with a variety of ferromagnesian enrichment, from magnesian granitoids, which do not. The ferroan minerals, can be achieved by a number of processes. and magnesian granitoids can further be classified into alkalic, Granitoids can form from differentiation of any hyalkali–calcic, calc-alkalic, and calcic on the basis of the MALI persthene-normative melt and from partial melting of and subdivided on the basis of the ASI into peraluminous, metamany rock types. Furthermore, granitic melts may be luminous or peralkaline. Because alkalic rocks are not likely to be derived solely from crustal components, may form from peraluminous and calcic and calc-alkalic rocks are not likely to be evolved mantle-derived melts, or may be a mixture peralkaline, this classification leads to 16 possible groups of granitic of crustal and mantle-derived melts. Because of this rocks. In this classification most Cordilleran granitoids are magnesian complexity, petrologists have relied upon geochemical and calc-alkalic or calcic; both metaluminous and peraluminous classifications to distinguish between various types of types are present. A-type granitoids are ferroan alkali–calcic, although granitoids. Approximately 20 different schemes have evolved over the past 30 years [see Barbarin (1990, 1999) some are ferroan alkalic. Most are metaluminous although some are for a summary thereof]. Most of these schemes are either peraluminous. Caledonian post-orogenic granites are predominantly genetic or tectonic in nature. This paper is an attempt magnesian alkali–calcic. Those with <70 wt % SiO2 are domto present a non-genetic, non-tectonic geochemical clasinantly metaluminous, whereas more silica-rich varieties are comsification scheme that incorporates the best qualities of monly peraluminous. Peraluminous leucogranites may be either the previous schemes, and to explain the petrologic magnesian or ferroan and have a MALI that ranges from calcic to processes that makes this scheme work. alkalic.

3,135 citations