scispace - formally typeset
Search or ask a question
Author

Andrew J. Calder

Bio: Andrew J. Calder is an academic researcher from Cognition and Brain Sciences Unit. The author has contributed to research in topics: Facial expression & Gaze. The author has an hindex of 78, co-authored 162 publications receiving 25474 citations. Previous affiliations of Andrew J. Calder include University of Western Australia & Bangor University.


Papers
More filters
Journal ArticleDOI
31 Oct 1996-Nature
TL;DR: Direct in vivo evidence of a differential neural response in the human amygdala to facial expressions of fear and happiness is reported, providing direct evidence that the humangdala is engaged in processing the emotional salience of faces, with a specificity of response to fearful facial expressions.
Abstract: The amygdala is thought to play a crucial role in emotional and social behaviour. Animal studies implicate the amygdala in both fear conditioning and face perception. In humans, lesions of the amygdala can lead to selective deficits in the recognition of fearful facial expressions and impaired fear conditioning, and direct electrical stimulation evokes fearful emotional responses. Here we report direct in vivo evidence of a differential neural response in the human amygdala to facial expressions of fear and happiness. Positron-emission tomography (PET) measures of neural activity were acquired while subjects viewed photographs of fearful or happy faces, varying systematically in emotional intensity. The neuronal response in the left amygdala was significantly greater to fearful as opposed to happy expressions. Furthermore, this response showed a significant interaction with the intensity of emotion (increasing with increasing fearfulness, decreasing with increasing happiness). The findings provide direct evidence that the human amygdala is engaged in processing the emotional salience of faces, with a specificity of response to fearful facial expressions.

1,954 citations

Journal ArticleDOI
02 Oct 1997-Nature
TL;DR: Functional magnetic resonance imaging was used to examine the neural substrate for perceiving disgust expressions and found the neural response to facial expressions of disgust in others is thus closely related to appraisal of distasteful stimuli.
Abstract: Recognition of facial expressions is critical to our appreciation of the social and physical environment, with separate emotions having distinct facial expressions. Perception of fearful facial expressions has been extensively studied, appearing to depend upon the amygdala. Disgust-literally 'bad taste'-is another important emotion, with a distinct evolutionary history, and is conveyed by a characteristic facial expression. We have used functional magnetic resonance imaging (fMRI) to examine the neural substrate for perceiving disgust expressions. Normal volunteers were presented with faces showing mild or strong disgust or fear. Cerebral activation in response to these stimuli was contrasted with that for neutral faces. Results for fear generally confirmed previous positron emission tomography findings of amygdala involvement. Both strong and mild expressions of disgust activated anterior insular cortex but not the amygdala; strong disgust also activated structures linked to a limbic cortico-striatal-thalamic circuit. The anterior insula is known to be involved in responses to offensive tastes. The neural response to facial expressions of disgust in others is thus closely related to appraisal of distasteful stimuli.

1,548 citations

Journal ArticleDOI
01 Jan 1998-Brain
TL;DR: Functional neuroimaging confirmed that the amygdala and some of its functionally connected structures mediate specific neural responses to fearful expressions and demonstrated that amygdalar responses predict expression-specific neural activity in extrastriate cortex.
Abstract: Localized amygdalar lesions in humans produce deficits in the recognition of fearful facial expressions. We used functional neuroimaging to test two hypotheses: (i) that the amygdala and some of its functionally connected structures mediate specific neural responses to fearful expressions; (ii) that the early visual processing of emotional faces can be influenced by amygdalar activity. Normal subjects were scanned using PET while they performed a gender discrimination task involving static grey-scale images of faces expressing varying degrees of fear or happiness. In support of the first hypothesis, enhanced activity in the left amygdala, left pulvinar, left anterior insula and bilateral anterior cingulate gyri was observed during the processing of fearful faces. Evidence consistent with the second hypothesis was obtained by a demonstration that amygdalar responses predict expression-specific neural activity in extrastriate cortex.

1,282 citations

Journal ArticleDOI
TL;DR: A dominant view in face-perception research has been that the recognition of facial identity and facial expression involves separable visual pathways at the functional and neural levels, and data from experimental, neuropsychological, functional imaging and cell-recording studies are commonly interpreted within this framework.
Abstract: Faces convey a wealth of social signals. A dominant view in face-perception research has been that the recognition of facial identity and facial expression involves separable visual pathways at the functional and neural levels, and data from experimental, neuropsychological, functional imaging and cell-recording studies are commonly interpreted within this framework. However, the existing evidence supports this model less strongly than is often assumed. Alongside this two-pathway framework, other possible models of facial identity and expression recognition, including one that has emerged from principal component analysis techniques, should be considered.

898 citations

Journal ArticleDOI
TL;DR: The amygdala is involved in processing facial signals of fear and in fear conditioning, and this conclusion has emerged from evidence converging from the analysis of animals with amygdala lesions, from patients with bilateral amygdala damage and from functional imaging experiments in healthy individuals.
Abstract: For over 60 years, ideas about emotion in neuroscience and psychology have been dominated by a debate on whether emotion can be encompassed within a single, unifying model. In neuroscience, this approach is epitomized by the limbic system theory and, in psychology, by dimensional models of emotion. Comparative research has gradually eroded the limbic model, and some scientists have proposed that certain individual emotions are represented separately in the brain. Evidence from humans consistent with this approach has recently been obtained by studies indicating that signals of fear and disgust are processed by distinct neural substrates. We review this research and its implications for theories of emotion.

848 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The field of neuroscience has, after a long period of looking the other way, again embraced emotion as an important research area, and much of the progress has come from studies of fear, and especially fear conditioning as mentioned in this paper.
Abstract: The field of neuroscience has, after a long period of looking the other way, again embraced emotion as an important research area. Much of the progress has come from studies of fear, and especially fear conditioning. This work has pin- pointed the amygdala as an important component of the system involved in the acqui- sition, storage, and expression of fear memory and has elucidated in detail how stimuli enter, travel through, and exit the amygdala. Some progress has also been made in understanding the cellular and molecular mechanisms that underlie fear conditioning, and recent studies have also shown that the findings from experimental animals apply to the human brain. It is important to remember why this work on emotion succeeded where past efforts failed. It focused on a psychologically well-defined aspect of emo- tion, avoided vague and poorly defined concepts such as "affect," "hedonic tone," or "emotional feelings," and used a simple and straightforward experimental approach. With so much research being done in this area today, it is important that the mistakes of the past not be made again. It is also time to expand from this foundation into broader aspects of mind and behavior

7,347 citations

Journal ArticleDOI
TL;DR: Functional anatomical work has detailed an afferent neural system in primates and in humans that represents all aspects of the physiological condition of the physical body that might provide a foundation for subjective feelings, emotion and self-awareness.
Abstract: As humans, we perceive feelings from our bodies that relate our state of well-being, our energy and stress levels, our mood and disposition. How do we have these feelings? What neural processes do they represent? Recent functional anatomical work has detailed an afferent neural system in primates and in humans that represents all aspects of the physiological condition of the physical body. This system constitutes a representation of 'the material me', and might provide a foundation for subjective feelings, emotion and self-awareness.

4,673 citations

Journal ArticleDOI
TL;DR: A model for the organization of this system that emphasizes a distinction between the representation of invariant and changeable aspects of faces is proposed and is hierarchical insofar as it is divided into a core system and an extended system.

4,430 citations

Journal ArticleDOI
TL;DR: Analysis of regional activations across cognitive domains suggested that several brain regions, including the cerebellum, are engaged by a variety of cognitive challenges.
Abstract: Positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) have been extensively used to explore the functional neuroanatomy of cognitive functions. Here we review 275 PET and fMRI studies of attention (sustained, selective, Stroop, orientation, divided), perception (object, face, space/motion, smell), imagery (object, space/ motion), language (written/spoken word recognition, spoken/ no spoken response), working memory (verbal/numeric, object, spatial, problem solving), semantic memory retrieval (categorization, generation), episodic memory encoding (verbal, object, spatial), episodic memory retrieval (verbal, nonverbal, success, effort, mode, context), priming (perceptual, conceptual), and procedural memory (conditioning, motor, and nonmotor skill learning). To identify consistent activation patterns associated with these cognitive operations, data from 412 contrasts were summarized at the level of cortical Brodmann's areas, insula, thalamus, medial-temporal lobe (including hippocampus), basal ganglia, and cerebellum. For perception and imagery, activation patterns included primary and secondary regions in the dorsal and ventral pathways. For attention and working memory, activations were usually found in prefrontal and parietal regions. For language and semantic memory retrieval, typical regions included left prefrontal and temporal regions. For episodic memory encoding, consistently activated regions included left prefrontal and medial-temporal regions. For episodic memory retrieval, activation patterns included prefrontal, medial-temporal, and posterior midline regions. For priming, deactivations in prefrontal (conceptual) or extrastriate (perceptual) regions were consistently seen. For procedural memory, activations were found in motor as well as in non-motor brain areas. Analysis of regional activations across cognitive domains suggested that several brain regions, including the cerebellum, are engaged by a variety of cognitive challenges. These observations are discussed in relation to functional specialization as well as functional integration.

3,407 citations