scispace - formally typeset
Search or ask a question
Author

Andrew J. Dwork

Bio: Andrew J. Dwork is an academic researcher from Columbia University. The author has contributed to research in topics: Neurogenesis & Dentate gyrus. The author has an hindex of 49, co-authored 123 publications receiving 11408 citations. Previous affiliations of Andrew J. Dwork include Columbia University Medical Center & University of York.


Papers
More filters
Journal ArticleDOI
09 Aug 2013-Science
TL;DR: The results extend the knowledge of the unique role of DNA methylation in brain development and function, and offer a new framework for testing the role of the epigenome in healthy function and in pathological disruptions of neural circuits.
Abstract: DNA methylation is implicated in mammalian brain development and plasticity underlying learning and memory. We report the genome-wide composition, patterning, cell specificity, and dynamics of DNA methylation at single-base resolution in human and mouse frontal cortex throughout their lifespan. Widespread methylome reconfiguration occurs during fetal to young adult development, coincident with synaptogenesis. During this period, highly conserved non-CG methylation (mCH) accumulates in neurons, but not glia, to become the dominant form of methylation in the human neuronal genome. Moreover, we found an mCH signature that identifies genes escaping X-chromosome inactivation. Last, whole-genome single-base resolution 5-hydroxymethylcytosine (hmC) maps revealed that hmC marks fetal brain cell genomes at putative regulatory regions that are CG-demethylated and activated in the adult brain and that CG demethylation at these hmC-poised loci depends on Tet2 activity.

1,629 citations

Journal ArticleDOI
TL;DR: It is possible that ongoing hippocampal neurogenesis sustains human-specific cognitive function throughout life and that declines may be linked to compromised cognitive-emotional resilience.

934 citations

Journal ArticleDOI
03 Sep 2014-Neuron
TL;DR: This work reports increased dendritic spine density with reduced developmental spine pruning in layer V pyramidal neurons in postmortem ASD temporal lobe and suggests that mTOR-regulated autophagy is required for developmental spinePruning, and activation of neuronal Autophagy corrects synaptic pathology and social behavior deficits in ASD models with hyperactivated mTOR.

827 citations

Journal ArticleDOI
TL;DR: The increase of NPCs and dividing cells in MDDT was localized to the rostral DG, and whether this finding is critical or necessary for the antidepressants effect remains to be determined.

642 citations

Journal ArticleDOI
TL;DR: A diffuse reduction of 5-HTT binding in the PFC of individuals with major depression may reflect a widespread impairment of serotonergic function consistent with the range of psychopathologic features in major depression.
Abstract: Background Major depression and suicide are associated with fewer serotonin transporter (5-HTT) sites. The 5′-flanking promoter region of the 5-HTT gene has a biallelic insertion/deletion (5-HTTLPR). We assayed prefrontal cortical (PFC) 5-HTT binding in major depression and suicide and examine the relationship to the 5-HTTLPR allele. Methods Postmortem brain samples from 220 individuals were genotyped for the 5-HTTLPR polymorphism. Binding of 5-HTT was assayed by quantitative autoradiography in the PFC of a subset of subjects (n = 159). Clinical information, including DSM-III-R Axis I diagnoses, was obtained by psychological autopsy and medical chart review. Results Binding to 5-HTT was lower in the ventral PFC of suicides compared with nonsuicides and was lower throughout the PFC of subjects with a history of major depression. The 5-HTTLPR genotype was associated with major depression but not with suicide or 5-HTT binding. Conclusions A diffuse reduction of 5-HTT binding in the PFC of individuals with major depression may reflect a widespread impairment of serotonergic function consistent with the range of psychopathologic features in major depression. The localized reduction in 5-HTT binding in the ventral PFC of suicides may reflect reduced serotonin input to that brain region, underlying the predisposition to act on suicidal thoughts. The 5-HTTLPR genotype was not related to the level of 5-HTT binding and does not explain why 5-HTT binding is lower in major depression or suicide.

581 citations


Cited by
More filters
01 Jan 2016
TL;DR: The using multivariate statistics is universally compatible with any devices to read, allowing you to get the most less latency time to download any of the authors' books like this one.
Abstract: Thank you for downloading using multivariate statistics. As you may know, people have look hundreds times for their favorite novels like this using multivariate statistics, but end up in infectious downloads. Rather than reading a good book with a cup of tea in the afternoon, instead they juggled with some harmful bugs inside their laptop. using multivariate statistics is available in our digital library an online access to it is set as public so you can download it instantly. Our books collection saves in multiple locations, allowing you to get the most less latency time to download any of our books like this one. Merely said, the using multivariate statistics is universally compatible with any devices to read.

14,604 citations

Journal ArticleDOI
Anshul Kundaje1, Wouter Meuleman1, Wouter Meuleman2, Jason Ernst3, Misha Bilenky4, Angela Yen1, Angela Yen2, Alireza Heravi-Moussavi4, Pouya Kheradpour2, Pouya Kheradpour1, Zhizhuo Zhang2, Zhizhuo Zhang1, Jianrong Wang1, Jianrong Wang2, Michael J. Ziller2, Viren Amin5, John W. Whitaker, Matthew D. Schultz6, Lucas D. Ward2, Lucas D. Ward1, Abhishek Sarkar2, Abhishek Sarkar1, Gerald Quon1, Gerald Quon2, Richard Sandstrom7, Matthew L. Eaton2, Matthew L. Eaton1, Yi-Chieh Wu2, Yi-Chieh Wu1, Andreas R. Pfenning1, Andreas R. Pfenning2, Xinchen Wang2, Xinchen Wang1, Melina Claussnitzer1, Melina Claussnitzer2, Yaping Liu2, Yaping Liu1, Cristian Coarfa5, R. Alan Harris5, Noam Shoresh2, Charles B. Epstein2, Elizabeta Gjoneska2, Elizabeta Gjoneska1, Danny Leung8, Wei Xie8, R. David Hawkins8, Ryan Lister6, Chibo Hong9, Philippe Gascard9, Andrew J. Mungall4, Richard A. Moore4, Eric Chuah4, Angela Tam4, Theresa K. Canfield7, R. Scott Hansen7, Rajinder Kaul7, Peter J. Sabo7, Mukul S. Bansal10, Mukul S. Bansal1, Mukul S. Bansal2, Annaick Carles4, Jesse R. Dixon8, Kai How Farh2, Soheil Feizi2, Soheil Feizi1, Rosa Karlic11, Ah Ram Kim1, Ah Ram Kim2, Ashwinikumar Kulkarni12, Daofeng Li13, Rebecca F. Lowdon13, Ginell Elliott13, Tim R. Mercer14, Shane Neph7, Vitor Onuchic5, Paz Polak15, Paz Polak2, Nisha Rajagopal8, Pradipta R. Ray12, Richard C Sallari2, Richard C Sallari1, Kyle Siebenthall7, Nicholas A Sinnott-Armstrong2, Nicholas A Sinnott-Armstrong1, Michael Stevens13, Robert E. Thurman7, Jie Wu16, Bo Zhang13, Xin Zhou13, Arthur E. Beaudet5, Laurie A. Boyer1, Philip L. De Jager15, Philip L. De Jager2, Peggy J. Farnham17, Susan J. Fisher9, David Haussler18, Steven J.M. Jones19, Steven J.M. Jones4, Wei Li5, Marco A. Marra4, Michael T. McManus9, Shamil R. Sunyaev15, Shamil R. Sunyaev2, James A. Thomson20, Thea D. Tlsty9, Li-Huei Tsai1, Li-Huei Tsai2, Wei Wang, Robert A. Waterland5, Michael Q. Zhang21, Lisa Helbling Chadwick22, Bradley E. Bernstein15, Bradley E. Bernstein6, Bradley E. Bernstein2, Joseph F. Costello9, Joseph R. Ecker11, Martin Hirst4, Alexander Meissner2, Aleksandar Milosavljevic5, Bing Ren8, John A. Stamatoyannopoulos7, Ting Wang13, Manolis Kellis2, Manolis Kellis1 
19 Feb 2015-Nature
TL;DR: It is shown that disease- and trait-associated genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically relevant cell types for diverse human traits, and providing a resource for interpreting the molecular basis of human disease.
Abstract: The reference human genome sequence set the stage for studies of genetic variation and its association with human disease, but epigenomic studies lack a similar reference. To address this need, the NIH Roadmap Epigenomics Consortium generated the largest collection so far of human epigenomes for primary cells and tissues. Here we describe the integrative analysis of 111 reference human epigenomes generated as part of the programme, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression. We establish global maps of regulatory elements, define regulatory modules of coordinated activity, and their likely activators and repressors. We show that disease- and trait-associated genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically relevant cell types for diverse human traits, and providing a resource for interpreting the molecular basis of human disease. Our results demonstrate the central role of epigenomic information for understanding gene regulation, cellular differentiation and human disease.

5,037 citations

Journal ArticleDOI
TL;DR: The present updated guidelines review issues of risk and safety of conventional TMS protocols, address the undesired effects and risks of emerging TMS interventions, the applications of TMS in patients with implanted electrodes in the central nervous system, and safety aspects of T MS in neuroimaging environments.

4,447 citations

01 Feb 2015
TL;DR: In this article, the authors describe the integrative analysis of 111 reference human epigenomes generated as part of the NIH Roadmap Epigenomics Consortium, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression.
Abstract: The reference human genome sequence set the stage for studies of genetic variation and its association with human disease, but epigenomic studies lack a similar reference. To address this need, the NIH Roadmap Epigenomics Consortium generated the largest collection so far of human epigenomes for primary cells and tissues. Here we describe the integrative analysis of 111 reference human epigenomes generated as part of the programme, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression. We establish global maps of regulatory elements, define regulatory modules of coordinated activity, and their likely activators and repressors. We show that disease- and trait-associated genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically relevant cell types for diverse human traits, and providing a resource for interpreting the molecular basis of human disease. Our results demonstrate the central role of epigenomic information for understanding gene regulation, cellular differentiation and human disease.

4,409 citations

Journal ArticleDOI
TL;DR: The theory is proposed that the most dangerous form of suicidal desire is caused by the simultaneous presence of two interpersonal constructs-thwarted belongingness and perceived burdensomeness (and hopelessness about these states)-and further that the capability to engage in suicidal behavior is separate from the desire to engageIn suicidal behavior.
Abstract: Suicidal behavior is a major problem worldwide and, at the same time, has received relatively little empirical attention. This relative lack of empirical attention may be due in part to a relative absence of theory development regarding suicidal behavior. The current article presents the interpersonal theory of suicidal behavior. We propose that the most dangerous form of suicidal desire is caused by the simultaneous presence of two interpersonal constructs—thwarted belongingness and perceived burdensomeness (and hopelessness about these states)—and further that the capability to engage in suicidal behavior is separate from the desire to engage in suicidal behavior. According to the theory, the capability for suicidal behavior emerges, via habituation and opponent processes, in response to repeated exposure to physically painful and/or fear-inducing experiences. In the current article, the theory’s hypotheses are more precisely delineated than in previous presentations (Joiner, 2005), with the aim of inviting scientific inquiry and potential falsification of the theory’s hypotheses.

3,428 citations