scispace - formally typeset
Search or ask a question
Author

Andrew J. Lowe

Bio: Andrew J. Lowe is an academic researcher from University of Adelaide. The author has contributed to research in topics: Population & Genetic diversity. The author has an hindex of 57, co-authored 252 publications receiving 14105 citations. Previous affiliations of Andrew J. Lowe include University of Queensland & University of Bristol.


Papers
More filters
Journal ArticleDOI
TL;DR: The potential for rapid adaptation from standing genetic variation and from new mutations is reviewed, and four types of evolutionary change that might promote or constrain rapid adaptation during the invasion process are examined.

781 citations

Journal ArticleDOI
TL;DR: By examining key properties of dispersal pathways (notably propagule pressure, genetic diversity and the potential for simultaneous movement of coevolved species), the establishment and evolutionary trajectories of extra-range dispersal can be better understood.
Abstract: Biological invasions are caused by human-mediated extra-range dispersal and, unlike natural extra-range dispersal, are often the result of multiple introductions from multiple sources to multiple locations. The processes and opportunities that result in propagules moving from one area to another can be used more broadly to differentiate all types of extra-range dispersal. By examining key properties of dispersal pathways (notably propagule pressure, genetic diversity and the potential for simultaneous movement of coevolved species), the establishment and evolutionary trajectories of extra-range dispersal can be better understood. Moreover, elucidation of the mechanistic properties of dispersal pathways is crucial for scientists and managers who wish to assist, minimise or prevent future movements of organisms.

763 citations

Journal ArticleDOI
TL;DR: Ideas that need to be considered in planning for evolutionary resilience are summarized and how they might be incorporated into policy and management are suggested to ensure that resilience is maintained in the face of environmental degradation.
Abstract: Evolution occurs rapidly and is an ongoing process in our environments. Evolutionary principles need to be built into conservation efforts, particularly given the stressful conditions organisms are increasingly likely to experience because of climate change and ongoing habitat fragmentation. The concept of evolutionary resilience is a way of emphasizing evolutionary processes in conservation and landscape planning. From an evolutionary perspective, landscapes need to allow in situ selection and capture high levels of genetic variation essential for responding to the direct and indirect effects of climate change. We summarize ideas that need to be considered in planning for evolutionary resilience and suggest how they might be incorporated into policy and management to ensure that resilience is maintained in the face of environmental degradation.

655 citations

Journal ArticleDOI
TL;DR: It is suggested that seed sourcing should concentrate less on local collection and more on capturing high quality and genetically diverse seed to maximize the adaptive potential of restoration efforts to current and future environmental change.
Abstract: Restoring degraded land to combat environmental degradation requires the collection of vast quantities of germplasm (seed). Sourcing this material raises questions related to provenance selection, seed quality and harvest sustainability. Restoration guidelines strongly recommend using local sources to maximize local adaptation and prevent outbreeding depression, but in highly modified landscapes this restricts collection to small remnants where limited, poor quality seed is available, and where harvesting impacts may be high. We review three principles guiding the sourcing of restoration germplasm: (i) the appropriateness of using ‘local’ seed, (ii) sample sizes and population characteristics required to capture sufficient genetic diversity to establish self-sustaining populations and (iii) the impact of over-harvesting source populations. We review these topics by examining current collection guidelines and the evidence supporting these, then we consider if the guidelines can be improved and the consequences of not doing so. We find that the emphasis on local seed sourcing will, in many cases, lead to poor restoration outcomes, particularly at broad geographic scales. We suggest that seed sourcing should concentrate less on local collection and more on capturing high quality and genetically diverse seed to maximize the adaptive potential of restoration efforts to current and future environmental change.

553 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols used xiii 1.
Abstract: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols Used xiii 1. The Importance of Islands 3 2. Area and Number of Speicies 8 3. Further Explanations of the Area-Diversity Pattern 19 4. The Strategy of Colonization 68 5. Invasibility and the Variable Niche 94 6. Stepping Stones and Biotic Exchange 123 7. Evolutionary Changes Following Colonization 145 8. Prospect 181 Glossary 185 References 193 Index 201

14,171 citations

Journal Article
TL;DR: In this article, the authors present a document, redatto, voted and pubblicato by the Ipcc -Comitato intergovernativo sui cambiamenti climatici - illustra la sintesi delle ricerche svolte su questo tema rilevante.
Abstract: Cause, conseguenze e strategie di mitigazione Proponiamo il primo di una serie di articoli in cui affronteremo l’attuale problema dei mutamenti climatici. Presentiamo il documento redatto, votato e pubblicato dall’Ipcc - Comitato intergovernativo sui cambiamenti climatici - che illustra la sintesi delle ricerche svolte su questo tema rilevante.

4,187 citations

Journal ArticleDOI
24 Feb 2011-Nature
TL;DR: The challenges to understand when evolution will occur and to identify potential evolutionary winners as well as losers, such as species lacking adaptive capacity living near physiological limits can be met through realistic models of evolutionary change linked to experimental data across a range of taxa.
Abstract: Evolutionary adaptation can be rapid and potentially help species counter stressful conditions or realize ecological opportunities arising from climate change. The challenges are to understand when evolution will occur and to identify potential evolutionary winners as well as losers, such as species lacking adaptive capacity living near physiological limits. Evolutionary processes also need to be incorporated into management programmes designed to minimize biodiversity loss under rapid climate change. These challenges can be met through realistic models of evolutionary change linked to experimental data across a range of taxa.

2,505 citations

Journal ArticleDOI
TL;DR: This work argues for a broader categorization of population distinctiveness based on concepts of ecological and genetic exchangeability (sensu Templeton), which are more relevant for conservation.
Abstract: Conservation biologists assign population distinctiveness by classifying populations as evolutionarily significant units (ESUs). Historically, this classification has included ecological and genetic data. However, recent ESU concepts, coupled with increasing availability of data on neutral genetic variation, have led to criteria based exclusively on molecular phylogenies. We argue that the earlier definitions of ESUs, which incorporated ecological data and genetic variation of adaptive significance, are more relevant for conservation. Furthermore, this dichotomous summary (ESU or not) of a continuum of population differentiation is not adequate for determining appropriate management actions. We argue for a broader categorization of population distinctiveness based on concepts of ecological and genetic exchangeability ( sensu Templeton).

1,852 citations