scispace - formally typeset
Search or ask a question
Author

Andrew L. Kung

Other affiliations: Dana Corporation, Broad Institute, University of Iowa  ...read more
Bio: Andrew L. Kung is an academic researcher from Memorial Sloan Kettering Cancer Center. The author has contributed to research in topics: Cancer & Leukemia. The author has an hindex of 95, co-authored 308 publications receiving 38124 citations. Previous affiliations of Andrew L. Kung include Dana Corporation & Broad Institute.
Topics: Cancer, Leukemia, In vivo, Haematopoiesis, Apoptosis


Papers
More filters
Journal ArticleDOI
23 Dec 2010-Nature
TL;DR: A cell-permeable small molecule (JQ1) that binds competitively to acetyl-lysine recognition motifs, or bromodomains is reported, establishing proof-of-concept for targeting protein–protein interactions of epigenetic ‘readers’, and providing a versatile chemical scaffold for the development of chemical probes more broadly throughout the b romodomain family.
Abstract: Epigenetic proteins are intently pursued targets in ligand discovery. So far, successful efforts have been limited to chromatin modifying enzymes, or so-called epigenetic 'writers' and 'erasers'. Potent inhibitors of histone binding modules have not yet been described. Here we report a cell-permeable small molecule (JQ1) that binds competitively to acetyl-lysine recognition motifs, or bromodomains. High potency and specificity towards a subset of human bromodomains is explained by co-crystal structures with bromodomain and extra-terminal (BET) family member BRD4, revealing excellent shape complementarity with the acetyl-lysine binding cavity. Recurrent translocation of BRD4 is observed in a genetically-defined, incurable subtype of human squamous carcinoma. Competitive binding by JQ1 displaces the BRD4 fusion oncoprotein from chromatin, prompting squamous differentiation and specific antiproliferative effects in BRD4-dependent cell lines and patient-derived xenograft models. These data establish proof-of-concept for targeting protein-protein interactions of epigenetic 'readers', and provide a versatile chemical scaffold for the development of chemical probes more broadly throughout the bromodomain family.

3,489 citations

Journal ArticleDOI
TL;DR: AMN107 prolonged survival of mice injected with Bcr-Abl-transformed hematopoietic cell lines or primary marrow cells, and prolonged survival in imatinib-resistant CML mouse models, suggests this is a promising new inhibitor for the therapy of CML and Ph+ ALL.

1,474 citations

Journal ArticleDOI
TL;DR: The data suggest that Dicer participates in multiple, fundamental biological processes in a mammalian organism, ranging from stem cell differentiation to the maintenance of centromeric heterochromatin structure and Centromeric silencing.
Abstract: Dicer is the enzyme that cleaves double-stranded RNA (dsRNA) into 21–25-nt-long species responsible for sequence-specific RNA-induced gene silencing at the transcriptional, post-transcriptional, or translational level. We disrupted the dicer-1 (dcr-1) gene in mouse embryonic stem (ES) cells by conditional gene targeting and generated Dicer-null ES cells. These cells were viable, despite being completely defective in RNA interference (RNAi) and the generation of microRNAs (miRNAs). However, the mutant ES cells displayed severe defects in differentiation both in vitro and in vivo. Epigenetic silencing of centromeric repeat sequences and the expression of homologous small dsRNAs were markedly reduced. Re-expression of Dicer in the knockout cells rescued these phenotypes. Our data suggest that Dicer participates in multiple, fundamental biological processes in a mammalian organism, ranging from stem cell differentiation to the maintenance of centromeric heterochromatin structure and centromeric silencing.

1,325 citations

Journal ArticleDOI
03 Sep 2004-Science
TL;DR: Hydrocarbon stapling of native peptides may provide a useful strategy for experimental and therapeutic modulation of protein-protein interactions in many signaling pathways.
Abstract: BCL-2 family proteins constitute a critical control point for the regulation of apoptosis. Protein interaction between BCL-2 members is a prominent mechanism of control and is mediated through the amphipathic α-helical BH3 segment, an essential death domain. We used a chemical strategy, termed hydrocarbon stapling, to generate BH3 peptides with improved pharmacologic properties. The stapled peptides, called “stabilized alpha-helix of BCL-2 domains” (SAHBs), proved to be helical, protease-resistant, and cell-permeable molecules that bound with increased affinity to multidomain BCL-2 member pockets. A SAHB of the BH3 domain from the BID protein specifically activated the apoptotic pathway to kill leukemia cells. In addition, SAHB effectively inhibited the growth of human leukemia xenografts in vivo. Hydrocarbon stapling of native peptides may provide a useful strategy for experimental and therapeutic modulation of protein-protein interactions in many signaling pathways.

1,316 citations


Cited by
More filters
Book
29 Sep 2017
TL;DR: Thank you very much for reading who classification of tumours of haematopoietic and lymphoid tissues, and maybe you have knowledge that, people have look hundreds of times for their chosen readings like this, but end up in malicious downloads.
Abstract: WHO CLASSIFICATION OF TUMOURS OF HAEMATOPOIETIC AND LYMPHOID TISSUES , WHO CLASSIFICATION OF TUMOURS OF HAEMATOPOIETIC AND LYMPHOID TISSUES , کتابخانه مرکزی دانشگاه علوم پزشکی تهران

13,835 citations

Journal ArticleDOI
23 Feb 2007-Cell
TL;DR: The surface of nucleosomes is studded with a multiplicity of modifications that can dictate the higher-order chromatin structure in which DNA is packaged and can orchestrate the ordered recruitment of enzyme complexes to manipulate DNA.

10,046 citations

Journal ArticleDOI
09 Jun 2005-Nature
TL;DR: A new, bead-based flow cytometric miRNA expression profiling method is used to present a systematic expression analysis of 217 mammalian miRNAs from 334 samples, including multiple human cancers, and finds the miRNA profiles are surprisingly informative, reflecting the developmental lineage and differentiation state of the tumours.
Abstract: Recent work has revealed the existence of a class of small non-coding RNA species, known as microRNAs (miRNAs), which have critical functions across various biological processes. Here we use a new, bead-based flow cytometric miRNA expression profiling method to present a systematic expression analysis of 217 mammalian miRNAs from 334 samples, including multiple human cancers. The miRNA profiles are surprisingly informative, reflecting the developmental lineage and differentiation state of the tumours. We observe a general downregulation of miRNAs in tumours compared with normal tissues. Furthermore, we were able to successfully classify poorly differentiated tumours using miRNA expression profiles, whereas messenger RNA profiles were highly inaccurate when applied to the same samples. These findings highlight the potential of miRNA profiling in cancer diagnosis.

9,470 citations

Journal ArticleDOI
TL;DR: MiRNA-expression profiling of human tumours has identified signatures associated with diagnosis, staging, progression, prognosis and response to treatment and has been exploited to identify miRNA genes that might represent downstream targets of activated oncogenic pathways, or that target protein-coding genes involved in cancer.
Abstract: MicroRNA (miRNA ) alterations are involved in the initiation and progression of human cancer. The causes of the widespread differential expression of miRNA genes in malignant compared with normal cells can be explained by the location of these genes in cancer-associated genomic regions, by epigenetic mechanisms and by alterations in the miRNA processing machinery. MiRNA-expression profiling of human tumours has identified signatures associated with diagnosis, staging, progression, prognosis and response to treatment. In addition, profiling has been exploited to identify miRNA genes that might represent downstream targets of activated oncogenic pathways, or that target protein- coding genes involved in cancer.

6,345 citations

Journal Article
TL;DR: The causes of the widespread differential expression of miRNA genes in malignant compared with normal cells can be explained by the location of these genes in cancer-associated genomic regions, by epigenetic mechanisms and by alterations in the miRNA processing machinery as discussed by the authors.
Abstract: MicroRNA (miRNA) alterations are involved in the initiation and progression of human cancer. The causes of the widespread differential expression of miRNA genes in malignant compared with normal cells can be explained by the location of these genes in cancer-associated genomic regions, by epigenetic mechanisms and by alterations in the miRNA processing machinery. MiRNA-expression profiling of human tumours has identified signatures associated with diagnosis, staging, progression, prognosis and response to treatment. In addition, profiling has been exploited to identify miRNA genes that might represent downstream targets of activated oncogenic pathways, or that target protein- coding genes involved in cancer.

6,306 citations