scispace - formally typeset
Search or ask a question
Author

Andrew L. Sullivan

Other affiliations: Australian National University
Bio: Andrew L. Sullivan is an academic researcher from Commonwealth Scientific and Industrial Research Organisation. The author has contributed to research in topics: Poison control & Combustion. The author has an hindex of 26, co-authored 71 publications receiving 3114 citations. Previous affiliations of Andrew L. Sullivan include Australian National University.


Papers
More filters
Journal ArticleDOI
TL;DR: A review of surface fire spread models developed since 1990 can be found in this paper, where the authors review models of a physical or quasi-physical nature, and mathematical analogues and simulation models.
Abstract: In recent years, advances in computational power and spatial data analysis (GIS, remote sensing, etc) have led to an increase in attempts to model the spread and behaviour of wildland fires across the landscape. This series of review papers endeavours to critically and comprehensively review all types of surface fire spread models developed since 1990. This paper reviews models of a physical or quasi-physical nature. These models are based on the fundamental chemistry and/or physics of combustion and fire spread. Other papers in the series review models of an empirical or quasi-empirical nature, and mathematical analogues and simulation models. Many models are extensions or refinements of models developed before 1990. Where this is the case, these models are also discussed but much less comprehensively.

364 citations

Journal ArticleDOI
TL;DR: The Kilmore East fire was the most significant of these fires, burning 100,000ha in less than 12h and accounting for 70% of the fatalities as mentioned in this paper, and it was the first fire to cause 173 human fatalities.

315 citations

Journal ArticleDOI
TL;DR: In recent years, advances in computational power have led to an increase in attempts to model the behaviour of wildland fires and to simulate their spread across the landscape as discussed by the authors, and the present series of articles endeavours to comprehensively survey and precis all types of surface fire spread models developed during the period 1990-2007, providing a useful starting point for those readers interested in recent modelling activities.
Abstract: In recent years, advances in computational power have led to an increase in attempts to model the behaviour of wildland fires and to simulate their spread across the landscape. The present series of articles endeavours to comprehensively survey and precis all types of surface fire spread models developed during the period 1990–2007, providing a useful starting point for those readers interested in recent modelling activities. The current paper surveys models of a physical or quasi-physical nature. These models are based on the fundamental chemistry and physics, or physics alone, of combustion and fire spread. Other papers in the series review models of an empirical or quasi-empirical nature, and mathematical analogues and simulation models. Many models are extensions or refinements of models developed before 1990. Where this is the case, these models are also discussed but in much less detail.

296 citations

Journal ArticleDOI
TL;DR: The main relations of empirical models are those of wind speed and fuel moisture content with rate of forward spread as discussed by the authors, and the focus of the discussion is on the treatment of the wind speed, fuel moisture functions by the models.
Abstract: In recent years, advances in computational power have led to an increase in attempts to model the behaviour of wildland fires and to simulate their spread across landscape. The present series of articles endeavours to comprehensively survey and precis all types of surface fire spread models developed during the period 1990–2007. The current paper surveys models of an empirical or quasi-empirical nature. These models are based on the statistical analysis of experimentally obtained data with or without some physical framework for the basis of the relations. Other papers in the series review models of a physical or quasi-physical nature, and mathematical analogues and simulation models. The main relations of empirical models are those of wind speed and fuel moisture content with rate of forward spread. The focus of the discussion is on the treatment of the wind speed and fuel moisture functions by the models.

283 citations

Journal ArticleDOI
TL;DR: A comprehensive survey of surface fire spread models developed during the period 1990-2007 can be found in this article, where the authors survey models of a simulation or mathematical analogue nature, which are those that are based on some mathematical concept (rather than a physical representation of fire spread) that coincidentally represents the spread of fire.
Abstract: In recent years, advances in computational power have led to an increase in attempts to model the behaviour of wildland fires and to simulate their spread across landscape. The present series of articles endeavours to comprehensively survey and precis all types of surface fire spread models developed during the period 1990–2007. The present paper surveys models of a simulation or mathematical analogue nature. Most simulation models are implementations of existing empirical or quasi-empirical models and their primary function is to convert these generally one-dimensional models to two dimensions and then simulate the propagation of a fire perimeter across a modelled landscape. Mathematical analogue models are those that are based on some mathematical concept (rather than a physical representation of fire spread) that coincidentally represents the spread of fire. Other papers in the series survey models of a physical or quasi-physical nature, and empirical or quasi-empirical nature. Many models are extensions or refinements of models developed before 1990. Where this is the case, these models are also discussed but much less comprehensively.

260 citations


Cited by
More filters
01 Jan 2007

1,932 citations

Journal ArticleDOI
TL;DR: The Global Fire Emissions Database (GFED) as mentioned in this paper has been used to quantify global fire emissions patterns during 1997-2016, with the largest impact on emissions in temperate North America, Central America, Europe, and temperate Asia.
Abstract: . Climate, land use, and other anthropogenic and natural drivers have the potential to influence fire dynamics in many regions. To develop a mechanistic understanding of the changing role of these drivers and their impact on atmospheric composition, long-term fire records are needed that fuse information from different satellite and in situ data streams. Here we describe the fourth version of the Global Fire Emissions Database (GFED) and quantify global fire emissions patterns during 1997–2016. The modeling system, based on the Carnegie–Ames–Stanford Approach (CASA) biogeochemical model, has several modifications from the previous version and uses higher quality input datasets. Significant upgrades include (1) new burned area estimates with contributions from small fires, (2) a revised fuel consumption parameterization optimized using field observations, (3) modifications that improve the representation of fuel consumption in frequently burning landscapes, and (4) fire severity estimates that better represent continental differences in burning processes across boreal regions of North America and Eurasia. The new version has a higher spatial resolution (0.25°) and uses a different set of emission factors that separately resolves trace gas and aerosol emissions from temperate and boreal forest ecosystems. Global mean carbon emissions using the burned area dataset with small fires (GFED4s) were 2.2 × 1015 grams of carbon per year (Pg C yr−1) during 1997–2016, with a maximum in 1997 (3.0 Pg C yr−1) and minimum in 2013 (1.8 Pg C yr−1). These estimates were 11 % higher than our previous estimates (GFED3) during 1997–2011, when the two datasets overlapped. This net increase was the result of a substantial increase in burned area (37 %), mostly due to the inclusion of small fires, and a modest decrease in mean fuel consumption (−19 %) to better match estimates from field studies, primarily in savannas and grasslands. For trace gas and aerosol emissions, differences between GFED4s and GFED3 were often larger due to the use of revised emission factors. If small fire burned area was excluded (GFED4 without the s for small fires), average emissions were 1.5 Pg C yr−1. The addition of small fires had the largest impact on emissions in temperate North America, Central America, Europe, and temperate Asia. This small fire layer carries substantial uncertainties; improving these estimates will require use of new burned area products derived from high-resolution satellite imagery. Our revised dataset provides an internally consistent set of burned area and emissions that may contribute to a better understanding of multi-decadal changes in fire dynamics and their impact on the Earth system. GFED data are available from http://www.globalfiredata.org .

1,135 citations

Journal ArticleDOI
11 Nov 2016-Science
TL;DR: The full range and scale of climate change effects on global biodiversity that have been observed in natural systems are described, and a set of core ecological processes that underpin ecosystem functioning and support services to people are identified.
Abstract: Most ecological processes now show responses to anthropogenic climate change. In terrestrial, freshwater, and marine ecosystems, species are changing genetically, physiologically, morphologically, and phenologically and are shifting their distributions, which affects food webs and results in new interactions. Disruptions scale from the gene to the ecosystem and have documented consequences for people, including unpredictable fisheries and crop yields, loss of genetic diversity in wild crop varieties, and increasing impacts of pests and diseases. In addition to the more easily observed changes, such as shifts in flowering phenology, we argue that many hidden dynamics, such as genetic changes, are also taking place. Understanding shifts in ecological processes can guide human adaptation strategies. In addition to reducing greenhouse gases, climate action and policy must therefore focus equally on strategies that safeguard biodiversity and ecosystems.

815 citations

Journal ArticleDOI
TL;DR: In this paper, an assessment on the fundamentals such as feedstock types, the impact of different operating parameters, tar formation and cracking, and modelling approaches for biomass gasification is presented.
Abstract: Biomass gasification is a widely used thermochemical process for obtaining products with more value and potential applications than the raw material itself. Cutting-edge, innovative and economical gasification techniques with high efficiencies are a prerequisite for the development of this technology. This paper delivers an assessment on the fundamentals such as feedstock types, the impact of different operating parameters, tar formation and cracking, and modelling approaches for biomass gasification. Furthermore, the authors comparatively discuss various conventional mechanisms for gasification as well as recent advances in biomass gasification. Unique gasifiers along with multi-generation strategies are discussed as a means to promote this technology into alternative applications, which require higher flexibility and greater efficiency. A strategy to improve the feasibility and sustainability of biomass gasification is via technological advancement and the minimization of socio-environmental effects. This paper sheds light on diverse areas of biomass gasification as a potentially sustainable and environmentally friendly technology.

779 citations